Mathematical Models of Controlled Systems

  • Vladimír Jehlička
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

The paper is focused on the build of a mathematical model of digital controlled systems. This article describes the creation of mathematical models of one-dimensional systems by the method of experimental identification. The created model is used for predicting the static and dynamic behavior of the controlled system in the closed loop. Dynamic properties of systems are described by the differential equations. In the experimental part are identified the parameters of the mathematical model of rectifying column. As an example, the one-dimensional controlled system, in this case is described the dependence of concentration distilled mixture on change the reflux.

Keywords

Mathematical models experimental identification recursive identification rectification column 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torkamani, S., Butcher, E.A., Khasawneh, F.A.: Parameter identification in periodic delay differential equations with distributed delay. Communications in Nonlinear Science and Numerical Simulation 18(4), 1016–1026 (2013), ISSN 10075704, doi:10.1016/j.cnsns.2012.09.001, http://linkinghub.elsevier.com/retrieve/pii/S1007570412004182
  2. 2.
    Abbassi, F., Belhadj, T., Mistou, S., Zghal, A.: Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Materials 45, 605–615 (2013), ISSN 02613069, doi:10.1016/j.matdes.2012.09.032, http://linkinghub.elsevier.com/retrieve/pii/S0261306912006632
  3. 3.
    Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 26(1) (2013), ISSN 00051098, doi:10.1016/j.automatica.2013.01.026, http://linkinghub.elsevier.com/retrieve/pii/S0005109813000277
  4. 4.
    Valderrama, J.O., Faãºndez, C.A., Toselli, L.A.: Advances on modeling and simulation of alcoholic distillation. Part 1: Thermodynamic modeling. Food and Bioproducts Processing 90(4), 819–831 (2012), ISSN 09603085, doi:10.1016/j.fbp.2012.04.004, http://linkinghub.elsevier.com/retrieve/pii/S0960308512000302
  5. 5.
    Valderrama, J.O., Toselli, L.A., Faundez, C.A.: Advances on modeling and simulation of alcoholic distillation. Part 2: Process simulation. Food and Bioproducts Processing 90(4), 832–840 (2012), ISSN 09603085, doi:10.1016/j.fbp.2012.04.003, http://linkinghub.elsevier.com/retrieve/pii/S0960308512000296
  6. 6.
    Isermann, R.: Digitale Regelsysteme: Band II, Stochastische Regelungen, Mhrgrössenregelungen, Adaptive Regelunungen, Anwendungen. 2., überarb. u. erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6597-5Google Scholar
  7. 7.
    Mahapatra, P., Bequette, B.W.: Process Design and Control Studies of an Elevated-Pressure Air Separations Unit for IGCC Power Plants. In: Proceedings of the.. American Control Conference, pp. 2003–2008. IEEE, New York (2010) ISBN 978-1-4244-7427-1ISSN 0743-1619Google Scholar
  8. 8.
    Isermann, R.: Digitale Regelsysteme: Band I, Grundlagen Deterministische Regelungen. 2., überarb. und erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6596-7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Vladimír Jehlička
    • 1
  1. 1.Jan Perner Transport Faculty, Department of Informatics in TransportUniversity of PardubicePardubiceCzech Republic

Personalised recommendations