Advertisement

Predictive Control of Radio Telescope Using Multi-layer Perceptron Neural Network

  • Sergej Jakovlev
  • Miroslav Voznak
  • Kestutis Ruibys
  • Arunas Andziulis
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

Radio telescope (RT) installations are highly valuable assets and during the period of their service life they need regular repair and maintenance to be carried out for delivering satisfactory performance and minimizing downtime. With the growing automation technologies, predictive control can prove to be a better approach than the traditionally applied visual inspection policy and linear models. In this paper, Irbene Radio telescope RT-16 disk rotation control motors are analysed. Retrieved data from the small DC motor is used for the predictive control approach. A Multilayer Perceptron (MLP) network approach is used for prediction of the indicator voltage output which affects the monitoring of the disk rotating angle.

Keywords

Predictive control multi-layer perceptron neural network data processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savran, A., Tasaltin, R., Becerikli, Y.: Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks. ISA Transactions 45(2), 225–247 (2006)CrossRefGoogle Scholar
  2. 2.
    Vasickaninova, A., Bakosova, M., Meszaros, A., Klemes, J.J.: Neural network predictive control of a heat exchanger. Applied Thermal Engineering 31(13), 2094–2100 (2011)CrossRefGoogle Scholar
  3. 3.
    Vahidinasab, V., Jadid, S., Kazemi, A.: Day-ahead price forecasting in restructured power systems using artificial neural networks. Electric Power Systems Research 78(8), 1332–1342 (2008)CrossRefGoogle Scholar
  4. 4.
    Mukherjee, I., Routroy, S.: Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Systems with Applications 39(3), 397–2407 (2012)CrossRefGoogle Scholar
  5. 5.
    Piotrowski, A.P., Napiorkowski, J.J.: Optimizing neural networks for river flow forecasting – Evolutionary Computation methods versus the Levenberg–Marquardt approach. Journal of Hydrology 407(1-4), 12–27 (2011)CrossRefGoogle Scholar
  6. 6.
    Kermani, B.G., Schiffman, S.S., Troy Nagle, H.: Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical 110(1), 13–22 (2005)CrossRefGoogle Scholar
  7. 7.
    Snášel, V., Húsek, D., Frolov, A.A., Řezanková, H., Moravec, P., Polyakov, P.: Bars Problem Solving - New Neural Network Method and Comparison. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 671–682. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sergej Jakovlev
    • 1
  • Miroslav Voznak
    • 2
  • Kestutis Ruibys
    • 1
  • Arunas Andziulis
    • 1
  1. 1.Department of Informatics EngineeringKlaipeda UniversityKlaipedaLithuania
  2. 2.Department of TelecommunicationsVSB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations