Advertisement

Supervised and Reinforcement Learning in Neural Network Based Approach to the Battleship Game Strategy

  • Ladislav Clementis
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

In our study the Battleship game we concern as an example of a simple pattern matching problem in correspondence with the Partially observable Markov decision process. We provide comparison of supervised and reinforcement learning paradigms used as neural network learning mechanisms applied by solving the Battleship game.We examine convergence of the neural network adaptation process by using these techniques.While concerning our pattern matching problem of the Battleship game solution by the neural network the reinforcement learning technique is not as straightforward as the supervised learning. On the other hand the neural network adaptation by the supervised learning mechanism has a faster convergence in our case. We use the Battleship game probability model to determine next position in an environment to be shot at with the highest probability of resulting into a successful hit attempt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A.: Hybrid soft computing and applications. International Journal of Computational Intelligence and Applications 8(1), 5–7 (2009)CrossRefGoogle Scholar
  2. 2.
    Clementis, L.: Model driven classifier evaluation in rule-based system. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 267–276. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Corchado, A., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL 19(2), 373–383 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Drugowitsch, J.: Design and Analysis of Learning Classifier Systems: A Probabilistic Approach. SCI. Springer, Heidelberg (2008)MATHGoogle Scholar
  5. 5.
    Halavati, R., Shouraki, S., Lotfi, S., Esfandiar, P.: Symbiotic evolution of rule based classifier systems. International Journal on Artificial Intelligence Tools 18(1), 1–16 (2009)CrossRefGoogle Scholar
  6. 6.
    Harmon, M., Harmon, S.: Reinforcement learning: A tutorial (1996), http://www.nbu.bg/cogs/events/2000/Readings/Petrov/rltutorial.pdf
  7. 7.
    Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  9. 9.
    Kriesel, D.: A Brief Introduction to Neural Networks, Zeta version (2007), http://www.dkriesel.com
  10. 10.
    Krömer, P., Platos, J., Snášel, V., Abraham, A.: Fuzzy classification by evolutionary algorithms. In: SMC, pp. 313–318. IEEE (2011)Google Scholar
  11. 11.
    Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Qudrat-Ullah, H., Spector, J., Davidsen, P.: Complex decision making: theory and practice. Understanding complex systems. Springer (2008), http://books.google.sk/books?id=DDs1ps3YRWQC
  13. 13.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  14. 14.
    Smith, M.: Neural Networks for Statistical Modeling. Thomson Learning (1993)Google Scholar
  15. 15.
    Sutton, R., Barto, A.: Reinforcement learning: an introduction. Adaptive computation and machine learning. MIT Press (1998), http://books.google.sk/books?id=CAFR6IBF4xYC
  16. 16.
    Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992), http://jmvidal.cse.sc.edu/library/watkins92a.pdf MATHCrossRefGoogle Scholar
  17. 17.
    Zadeh, L.: Fuzzy logic, neural networks, and soft computing. Communication of the ACM 37(3), 77–84 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zelinka, I., Davendra, D.D., Chadli, M., Senkerik, R., Dao, T.T., Skanderova, L.: Evolutionary dynamics as the structure of complex networks. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 215–243. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institute of Applied Informatics, Faculty of Informatics and Information TechnologiesSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations