Unknown Input Proportional Integral Observer Design for Chaotic TS Fuzzy Models

  • T. Youssef
  • Mohammed Chadli
  • Ivan Zelinka
  • M. Zelmat
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

In this paper, the chaos synchronization problem is treated by an unknown input proportional integral observer (PIO) for a Takagi-Sugeno (TS) fuzzy chaotic model subject to unknown input and unmeasurable decision variables. This unknown input is considered like a message to encode by a chaotic system then to decode or to reconstruct by the PIO after to be transmitted by a public transmission canal in order to a secure communication system. In our case, the unknown input affects both state and output of the chaotic system. The synthesis conditions of this PIO are based on the hypothesis that the unknown input is under polynomial form with its kth derivative zero. At the end the measurable decision variables are also considered in this work like a particular case. The Lyapunov theory is used to develop the stability conditions of the unknown input PIO in LMIs formulation. A simulation example is proposed through a TS fuzzy chaotic model to validate the proposed design.

Keywords

TS fuzzy models Unmeasurable decision variables Unknown input reconstruction Proportional Integral Observer Synchronization Chaotic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, G.P., Chen, G., Tang, W.K.S.: Stabilizing unstable equilibria of chaotic systems from a state observer approach. IEEE Trans. Circ. Syst. 51(6), 281–288 (2004)CrossRefGoogle Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. Syst. 38, 453–456 (1991)CrossRefGoogle Scholar
  4. 4.
    Lorenz, E.N.: Deterministic Nonperiodic Flow. J. Atmosp. Sci. 20(2), 130–141 (1963)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yang, J.Z., Hu, G., Xiao, J.H.: Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents. Physical Review Letters 80(3), 496–499 (1998)CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chos: theory and applications. Phys. Rep. 329, 103–197 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Shahverdiev, E.M.: Synchronization in systems with multiple time delays. Physical Review E 70(6), 67202 (2004)CrossRefGoogle Scholar
  9. 9.
    Xu, J.F., Min, L.Q., Chen, G.R.: A chaotic communication scheme based on generalized synchronization and hash functions. Chinese Physics Letters 21, 1445–1448 (2004)CrossRefGoogle Scholar
  10. 10.
    Haefner, J.W.: Modeling Biological Systems, Principles and Applications. Springer (2005)Google Scholar
  11. 11.
    Tao, C.H., Yang, C.D., Luo, Y., Xiong, H.X., Hu, F.: Speed feedback control of chaotic system. Chaos SolitonFract 23(1), 259–263 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    Yu, Y.: Adaptive synchronization of a unified chaotic system. Chaos Solitons Fractals 36(2), 329–333 (2008)MATHCrossRefGoogle Scholar
  13. 13.
    Wanga, B., Wang, J., Zhong, S.M.: Impulsive Synchronization Control for Chaotic Systems. Procedia Engineering 15, 2721–2726 (2011)CrossRefGoogle Scholar
  14. 14.
    Gonzalo, J., Cicese, B.R., Chen, G., Shieh, L.S.: Fuzzy chaos synchronization via sampled driving signals. Int. J. Bifurcat Chaos 14, 2721–2733 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Li, C., Liao, X., Wong, K.-W.: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals 23, 183–193 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Tavazoei, M.S., Haeri, M.: Determination of active sliding mode controller parameters in synchronizing different chaotic system. Chaos, Solitons Fractals 32, 583–591 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liao, T.-L., Tsai, S.-H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons and Fractals 11(9), 1387–1396 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Cheng, C.-J.: Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication. Applied Mathematics and Computation 219, 2698–2712 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenzed-based chao-tic circuits with applications to communications. IEEE Trans. Circ. Syst. II 40(10), 626–633 (1993)CrossRefGoogle Scholar
  20. 20.
    Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circ. Syst. II 40, 634–642 (1993)CrossRefGoogle Scholar
  21. 21.
    Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circ. Syst.I 43(9), 817–819 (1996)CrossRefGoogle Scholar
  22. 22.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst., Man Cybern. SCM–15(1), 116–132 (1985)CrossRefGoogle Scholar
  23. 23.
    Lian, K.Y., Chiu, C.S., Chiang, T.S., Liu, P.: Synthesis of fuzzy model-based design to synchronization and secure communication for chaotic systems. IEEE Trans. Syst. Man Cybern. Part B 31, 66–83 (2001)CrossRefGoogle Scholar
  24. 24.
    Kim, J.H., Park, C.W., Kim, E., Park, M.: Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters. Chaos, Solitons Fractals 24, 1353–1361 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hyun, C.-H., Park, C.-W., Kim, J.-H.: Mignon Park Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer. Chaos, Solitons and Fractals 40, 2200–2209 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Dimassi, H., Loria, A., Belghith, S.: A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers. Commun Nonlinear Sci. Numer.Simulat. 17, 3727–3739 (2012)MATHCrossRefGoogle Scholar
  27. 27.
    Chen, M., Min, W.: Unknown input observer based chaotic secure communication. Physics Letters A 372, 1595–1600 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hyun, C.-H., Park, C.-W., Kim, J.-H.: Mignon Park Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer. Chaos, Solitons and Fractals 40, 2200–2209 (2009)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Chadli, M.: Unknown input observer design for fuzzy systems with application to chaotic system reconstruction. Computers and Mathematics with Applications, 1–9 (2013)Google Scholar
  30. 30.
    Chadli, M., Gahinet, P.: H design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control 41(3), 358–367 (1996)CrossRefGoogle Scholar
  31. 31.
    Meng, X., Yu, Y., Wen, G., Chen, R.: Chaos Synchronization of Unified Chaotic System Using Fuzzy Logic Control. In: IEEE International Conference on Fuzzy Systems, FUZZ 2008, pp. 544–547 (2008)Google Scholar
  32. 32.
    Tanaka, K., Ikeda, T., Wang, H.O.: A Unified Approach to Controlling Chaos viaan LMI-Based Fuzzy Control System Design. IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications 45(10), 1021–1040 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • T. Youssef
    • 2
  • Mohammed Chadli
    • 1
  • Ivan Zelinka
    • 3
  • M. Zelmat
    • 2
  1. 1.The Laboratory of Modeling, Information & Systems (MIS)University of Picardie Jules Verne (UPJV)Amiens Cedex 1France
  2. 2.The Laboratory of Automatic Applied (LAA)M’hamed Bougara University of Boumerdés (UMBB)BoumerdesAlgeria
  3. 3.Department of Computer Science, Faculty of Electrical Engineering and Computer ScienceVSB-TUOOstrava-PorubaCzech Republic

Personalised recommendations