A Three-Dimensional Space Coverage Algorithm in Wireless Sensor Networks

  • Meng Tang
  • Qiang Wan
  • Jin Li
  • Yu Xiang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 246)


Sensor node coverage problem should be considered in 3D-space with the WSN deployed in atmosphere and underwater. In this paper, we focus on the effective coverage algorithm of sensor nodes in 3D networks, the analysis of the space-filling polyhedrons indicated that space-filling based on truncated octahedral is most effective. By the structure characteristics of filling space by Hexagonal Prism, Rhombic Dodecahedron and truncated octahedral, we provided the improved algorithm of cumulating the coordinate of nodes based on 3D mesh and simulated by MATLAB which confirmed there need least nodes by the coverage based on truncated octahedral. Meanwhile, the simulation results shows that the proposed algorithm is faster compared with the traditional calculating coordinate method.


Three-dimensional networks Voronoi tessellation Kelvin’s conjecture Kepler’s conjecture Coverage 


  1. 1.
    Fan Gao-juan, Wang Ru-chuan, Huang Hai-ping et al (2011) Tolerable coverage area based node scheduling algorithm in wireless sensor networks[J]. Acta Electronica Sinica 39(1):89–94Google Scholar
  2. 2.
    Zhanglihong, Chenshuqian (2011) Simulation of coverage algorithm in wireless sensor networks. Comput Simulat 28(4):119–122Google Scholar
  3. 3.
    Wuyongan, Yinjianping, Limin, Zhuen, Caizhiping (2008) Algorithms for the minimal connected k-coverage set problem under probabilistic sensing models in directional sensor networks. Comput Eng Sci 30(12):19–22
  4. 4.
    Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor networks: research challenges. Ad Hoc Networks J 3:257–279Google Scholar
  5. 5.
    John Heidemann, Wei Ye, Jack Wills, Affan Yuan Li (2006) Research challenges and applications for underwater sensor networking. IEEE communications and networking conference. Las Vegas, Nevada, USAGoogle Scholar
  6. 6.
    Jiejun Kong, Jun-hong Cui, Dapeng Wu, Mario Gerla (2005) Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. IEEE military communications conference (MILCOM’05), 17–20 Oct., Atlantic City, NJ, USAGoogle Scholar
  7. 7.
    Nazrul Alam SM, Haas ZJ (2006) Coverage and connectivity in three-dimensional networks. MobiCom’06, September 23–29, Los Angeles, California, USAGoogle Scholar
  8. 8.
    Weyl H (1952) Symmetry. Princeton University Press, Princeton, NJGoogle Scholar
  9. 9.
    Thomson, Sir William (Lord Kelvin) (1887) On the division of space with minimum partition area. Philosophical Magazine, 24:503–514.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations