Skip to main content

Ordering of Tungsten Carbides

  • Chapter
  • First Online:
Tungsten Carbides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 184))

Abstract

Atomic ordering of strongly nonstoichiometric compounds like carbides of transition metals is a very widespread phenomenon. The lower tungsten carbide \(\mathrm{W}_{2}\mathrm{C}_{y}\) is a strongly nonstoichiometric interstitial compound and has a wide homogeneity interval \(\mathrm{WC}_{0.34}-\mathrm{WC}_{0.52}\) at a temperature \(\sim \)3000 K. The literature data on the crystal structure of disordered and different ordered phases of \(\mathrm{W}_{2}\mathrm{C}_{y}\) carbide are contradictory. In this chapter the symmetry analysis of all possible superstructures of \(\mathrm{W}_{2}\mathrm{C}_{y}\) is performed and the physically possible sequence of phase transformations in this carbide is established. Also an analytical method is proposed for calculating the probabilities of existence of different pair interactions in the nonmetal sublattice of superstructures formed in strongly nonstoichiometric compounds \(\mathrm{MX}_{y}\) and \(\mathrm{M}_{2} \mathrm{X}_{y^{\prime }}\) with a high content of structural vacancies \(\square \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gusev AI, Rempel AA, Magerl AJ. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides. Berlin: Springer; 2001. 607 pp.

    Google Scholar 

  2. Gusev AI. Nonstoichiometry, disorder, short-range and long-range order in solids. Moscow: Nauka-Fizmatlit; 2007. 856 pp. ( in Russian).

    Google Scholar 

  3. De Novion CH, Beuneu B, Priem T, Lorenzelli N, Finel A. Defect structures and order-disorder transformations in transition metal carbides and nitrides. In: Freer R, editor. The physics and chemistry of carbides, nitrides and borides. Netherlands: Kluwer; 1990. p. 329–55.

    Google Scholar 

  4. Gusev AI, Rempel AA. Superstructures of non-stoichiometric interstitial compounds and the distribution functions of interstitial atoms. Phys Stat Sol. (a) 1993;135(1):15–58.

    Google Scholar 

  5. Gusev AI. Order-disorder transformations and phase equilibria in strongly nonstoichiometric compounds. Uspekhi Fiz Nauk. 2000;170(1):3–40 ( in Russian) (Engl. Transl.: Physics - Uspekhi. 2000;43(1):1–37).

    Google Scholar 

  6. Kurlov AS, Gusev AI. Phase equilibria in the W-C system and tungsten carbides. Uspekhi Khimii. 2006;75(7):687–708 (in Russian) (Engl. Transl.: Russian Chem Rev. 2006;75(7):617–636).

    Google Scholar 

  7. Yvon K, Nowotny H, Benesovsky F. Zur Kristallstruktur von \({\rm {W}}_{2}\)C. Monatsh Chemie. 1968;99(2):726–729.

    Google Scholar 

  8. Rudy E, Windisch S. Evidence to zeta Fe\(_{2}\)N-type sublattice order in \({\rm {W}}_{2}\)C at intermediate temperatures. J Am Ceram Soc. 1967;50(5):272–3.

    Google Scholar 

  9. Rudy E, Hoffman JR. Phasengleichgewichte im Bereich der kubischen Karbidphase im System Wolfram-Kohlenstoff. Planseeber Pulvermet. 1967;15(3):174–8.

    Google Scholar 

  10. Rudy E. Compendium of phase diagram data. Ternary phase equilibria in transition metal-boron-carbon-silicon systems (Part V). Final Tech. Report AFML TR-65-2. Wright-Patterson Air Force Base (Ohio, USA): Metals and Ceramics Division, Air Force Materials Laboratory; 1969. 735 pp.

    Google Scholar 

  11. Parthe E, Sadagopan V. The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 1963;16(3):202–5.

    Google Scholar 

  12. Stecher P, Benesovsky F, Nowotny H. Chromium-tungsten-carbon system. Planseeber Pulvermet. 1964;12(2):89–95.

    Google Scholar 

  13. Telegus VS, Gladyshevskii EI, Kripyakevich PI. Rhombic modifications of the compounds \({\rm {W}}_{2}\)C and Mo\(_{2}\)C. Kristallografiya 1967;12(5–6):936–9 ( in Russian) (Engl. Transl.: Sov Phys Crystallogr. 1967;12(6–6):813–816).

    Google Scholar 

  14. Telegus VS, Kuz’ma YuB, Marco MA. Phase equilibria in the systems molybdenum-manganese-carbon and tungsten-manganese-carbon. Poroshk Metallurgiya. 1971;10(11):56–63. ( in Russian) (Engl. Transl.: Powder Metallurg Metal Cer. 1971;10(11):898–903).

    Google Scholar 

  15. Nozik YuZ, Lipin YuF, Kuvaldin BV. A neutron diffraction study of the orthorhombic modification of \({\rm {W}}_{2}\)C. Izv Akad Nauk Latv SSR, Ser Fiz-Tekh. 1968;(6):30–33 ( in Russian).

    Google Scholar 

  16. Morton N, James BW, Wostenholm GH, Hepburn DCB. Superconductivity and the structure of \({\rm {W}}_{2}\)C. J Less-Common Metals 1972;29(4):423–426.

    Google Scholar 

  17. Kublii VZ, Velikanova TYa, Gnitetskii OA, Makhovitskaya SI. Structural parameters of the low-temperature metastable form of the carbide \({\rm {W}}_{2}\)C. Poroshk Metallurgiya. 2000;39(3–4):46–53 ( in Russian) (Engl. Transl.: Powder Metallurg Metal Cer. 2000;39(3–4):151–6).

    Google Scholar 

  18. Dubois J, Epicier T, Esnouf C, Fantozzi G, Convert P. Neutron powder diffraction studies of transition metal hemicarbides M\(_{2}\)C\(_{1-x}\). I. Motivation for a study on \({\rm {W}}_{2}\)C and Mo\(_{2}\)C experimental background for an in situ investigation at elevated temperature. Acta Metallurg. 1988;36(8):1891–1901.

    Google Scholar 

  19. Epicier T, Dubois J, Esnouf C, Fantozzi G, Convert P. Neutron powder diffraction studies of transition metal hemicarbides M\(_{2}\)C\(_{1-x}\). II. In situ high temperature study of \({\rm {W}}_{2}\)C\(_{1-x}\) and Mo\(_{2}\)C\(_{1-x}\). Acta Metallurg. 1988;36(8):1903–21.

    Google Scholar 

  20. Butorina LN, Pinsker ZG. Electron diffraction study of \({\rm {W}}_{2}\)C. Kristallografiya 1960;5(4):585–8 (in Russian) (Engl. Transl.: Sov Phys Crystallogr. 1960;5(4):560–62).

    Google Scholar 

  21. Harsta A, Rundqvist S, Thomas JO. A neutron powder diffraction study of \({\rm {W}}_{2}\)C. Acta Chem Scand A. 1978;32A(9):891-92.

    Google Scholar 

  22. Gusev AI, Kurlov AS. Ordering of the lowest tungsten carbide \({\rm {W}}_{2}\)C. Pis’ma v ZhETF. 2007;85(1):40–45 (in Russian) (Engl. Transl.. JETP Lett. 2007;85(1):34-39).

    Google Scholar 

  23. Lönnberg B, Lundström T, Tellgren R. A neutron powder diffraction study of Ta\(_{2}\)C and \({\rm {W}}_{2}\)C. J Less-Common Metals. 1986;120(2):239–45.

    Google Scholar 

  24. Epicier T, Dubois J, Esnouf C, Fantozzi G. Identification de la phase \(\beta \)-\({\rm {W}}_{2}\)C, type \(\varepsilon -{\rm {Fe}}_{2}\)N dans l’hémicarbure de tungsten. Compt Rend Acad Sci Paris Ser II. 1983;297(3):215–8.

    Google Scholar 

  25. Kublii VZ, Velikanova TYa, Khaenko BV. Single-crystal x-ray study of the \({\rm {W}}_{2}\)C carbide with structure of the \(\varepsilon \)-Fe\(_{2}\)N type. Metallofizika i Noveish. Tekhnologii (Metal Phys Adv Technol) 1999;21(9):26–8.

    Google Scholar 

  26. Kublii VZ, Velikanova TYa. Ordering in the carbide \({\rm {W}}_{2}\)C and phase equilibria in the tungsten-carbon system in the region of its existence. Poroshk Metallurgiya. 2004;43(11–12):101–16 ( in Russian) (Engl. Transl.: Powder Metallurg Metal Cer. 2004;43(11–12):630–44).

    Google Scholar 

  27. Gleiser M, Chipman J. Free energy of formation of tungsten carbide WC. Trans Metallurg Soc AIME. 1962;224(6):1278–79.

    Google Scholar 

  28. C - W (carbon - tungsten). In: Massalski TB, Subramanian PR, Okamoto H, Kasprzak L, editors. Binary alloy phase diagrams. 2nd ed, vol. 1. Metals Park: ASM; 1990. p. 895–6.

    Google Scholar 

  29. Sara RV. Phase equilibrium in the system tungsten-carbon. J Am Ceram Soc. 1965;48(5):251–7.

    Google Scholar 

  30. C-W. In: McHale AE, editor. Phase equilibria diagrams. Phase diagrams for ceramists, vol. X. Westerville: American Ceramic Society; 1994. p. 272–3.

    Google Scholar 

  31. Kurlov AS, Gusev AI. Phase transitions in the lowest tungsten carbide \({\rm {W}}_{2}\)C. Doklady Akad Nauk 2007;417(5):616–23 ( in Russian) (Engl. Transl.. Doklady Phys. 2007;52(12):656–62).

    Google Scholar 

  32. Kurlov AS, Gusev AI. Atomic-vacancy ordering of lower tungsten carbide \({\rm {W}}_{2}\)C. Zh Eksp Teor Fiz. 2007;132(4):812–26 (in Russian) (Engl/ Transl.: J Exp Theor Phys. 2007;105(4):710–21).

    Google Scholar 

  33. Kurlov AS, Gusev AI. Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide \({\rm {W}}_{2}\)C. Phys Rev B. 2007;76(17). Paper 174115. p. 174115-01–174115–16.

    Google Scholar 

  34. Kovalev OV. Irreducible representations of the space groups. New York: Gordon & Breach; 1965. p. 210.

    Google Scholar 

  35. Kovalev OV. Representations of the crystallographic space groups: irreducible representations, induced representations and corepresentation. Yverdon: Gordon & Breach; 1993. p. 390.

    Google Scholar 

  36. Khachaturian AG. Theory of structural transformations in solids. New York: John Wiley; 1983. p. 574.

    Google Scholar 

  37. Larson AC, von Dreele RB. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748. Los Alamos, 2004.

    Google Scholar 

  38. Warren BE, Averbach BL, Roberts BW. Atomic size effect in the X-ray scattering by alloys. J Appl Phys. 1951;22(12):1493–6.

    Google Scholar 

  39. Gusev AI, Rempel AA. Nanocrystalline materials. Cambridge: Cambridge International Science Publishers; 2004. p. 149.

    Google Scholar 

  40. Gusev AI. Nanomaterials, nanostructures, and nanotechnologies. 2nd ed. Moscow: Nauka - Fizmatlit; 2007. p. 186 (in Russian).

    Google Scholar 

  41. Zueva LV, Lipatnikov VN, Gusev AI. Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiC\(_{y }\). Neorgan Materialy. 2000;36(7):836–40 (in Russian) (Engl. Transl. Inorganic Mater. 2000;36(7):695–8.

    Google Scholar 

  42. Lipatnikov VN, Gusev AI. Annealing-induced ordering of bulk nonstoichiometric vanadium carbide. Neorgan Materialy. 2006;42(1):16–21 (in Russian) (Engl. Transl. Inorganic Mater. 2006;42(1):14–8).

    Google Scholar 

  43. Kurlov AS, Gusev AI. Tungsten carbides and W - C phase diagram. Neorgan Materialy. 2006;42(2):156–63 (in Russian) (Engl. Transl. Inorganic Mater. 2006;42(2):121–7).

    Google Scholar 

  44. Kurlov AS, Gusev AI. Pecualirities of vacuum annealing of nanocrystalline WC powders. Int J Refr Met Hard Mater. 2012;32(5):51–60.

    Google Scholar 

  45. Kurlov AS, Gusev AI. Vacuum annealing of nanocrystalline WC powders. Neorgan Materialy. 2012;48(7):781–91 ( in Russian) (Engl. Transl.: Inorg Mater. 2012;48(7):680–90).

    Google Scholar 

  46. Gusev AI, Rempel AA. Structural phase transitions in nonstoichiometric compounds. Moscow: Nauka, 1988. p.308 (in Russian).

    Google Scholar 

  47. Gusev AI, Rempel AA. Nonstoichiometry, disorder and order in solids. Ekaterinburg: Ural Division of the Russian Academy of Sciences; 2001. p. 580 (in Russian).

    Google Scholar 

  48. Gusev AI. Physical chemistry of nonstoichiometric refractory compounds. Moscow: Nauka; 1991. p. 286 (in Russian).

    Google Scholar 

  49. Gusev AI. Phase diagrams for ordering systems in order-parameter functional method. Fiz Tverd Tela 1990;32(9):2752–60 (in Russian) (Engl. Transl.: Sov Phys Solid State. 1990;32(9):1595–9).

    Google Scholar 

  50. Gusev AI, Rempel AA. Calculation of phase diagrams of interstitial compounds. J Phys Chem Solids. 1994;55(3):299–304.

    Article  CAS  Google Scholar 

  51. Gusev AI, Rempel AA. Phase diagrams of metal-carbon and metal-nitrogen systems and ordering in strongly nonstoichiometric carbides and nitrides. Phys Stat Sol (a) 1997;163(2):273–304.

    Google Scholar 

  52. Gusev AI, Rempel AA. Atomic ordering and phase equilibria in strongly nonstoichiometric carbides and nitrides. In: Gogotsi YG, Andrievski RA, editors. Materials science of carbides, nitrides and borides. Dordrecht: Kluwer; 1999. p. 47–64.

    Google Scholar 

  53. Kurlov AS, Gusev AI. Ordering of nonstoichiometric hexagonal compounds M\(_{2}\)X: a sequence of special figures. Fiz Tverd Tela. 2009;51(10):1933–9 (in Russian) (Engl. Transl.: Phys Solid State. 2009;51(10):2051–7).

    Google Scholar 

  54. Kikuchi R. Theory of cooperative phenomena. Phys Rev. 1951;81(6):988–1003.

    Google Scholar 

  55. Kurata M, Kikuchi R, Watari T. Theory of cooperative phenomena. Detailed discussions of the cluster variation method. J Chem Phys. 1953;21(3):434–48.

    Google Scholar 

  56. Hijmans J, de Boer J. Approximation method for order-disorder problem. Physica. 1955;21(6):471–516.

    Google Scholar 

  57. Golosov NS, Ushakov AV. Model of alloy in statistical theory of ordering. Fiz Tverd Tela. 1976;18(5):1262–8 (in Russian).

    Google Scholar 

  58. Sanchez JM, de Fontaine D. The f.c.c Izing model in the cluster variation approximation. Phys Rev B. 1978;17(12):2926–36.

    Google Scholar 

  59. Gusev AI, Rempel AA. Thermodynamic model of atomic ordering. Phase diagrams of ordered systems. Zh Fiz Khimii. 1991;65(3):625–33 (in Russian) (Engl. Transl.: Russ J Phys Chem. 1991;65(3):330–34).

    Google Scholar 

  60. Kurlov AS, Gusev AI. Determination of the probability of existence of pair interactions in the formation of M\(_{2t}\)X\(_{2t-1}\) superstructures in MX\(_{y}\) nonstoichiometric compounds. Fiz Tverd Tela. 2010;52(2):342–50 (in Russian) (Engl. Transl.: Phys Solid State. 2010;52(2):370–76).

    Google Scholar 

  61. Rempel AA, Gusev AI. Short-range order in ordered alloys and interstitial phases. Fiz Tverd Tela. 1990;32(1):16–24 (in Russian) (Engl. Transl.: Sov Phys Solid State. 1990;.32(1):8–13).

    Google Scholar 

  62. Rempel AA, Gusev AI. Short-range order in superstructures. Phys Stat Sol. (b). 1990;160(2):389–402.

    Google Scholar 

  63. Gusev AI. Disorder and long-range order in nonstoichiometric interstitial compounds: transition metal carbides, nitrides and oxydes. Phys Stat Sol. (b). 1991;163(1):17–54.

    Google Scholar 

  64. Gusev AI, Rempel AA. Calculating the energy parameters for CV and OPF methods. Phys Stat Sol. (b). 1987;140(2):335–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S Kurlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurlov, A.S., Gusev, A.I. (2013). Ordering of Tungsten Carbides. In: Tungsten Carbides. Springer Series in Materials Science, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-00524-9_3

Download citation

Publish with us

Policies and ethics