Skip to main content

Yield Criteria for Incompressible Materials in the Shear Stress Space

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 41))

Abstract

In the theory of plasticity different yield criteria for incompressible material behavior are used. The criteria of Tresca, von Mises and Schmidt-Ishlinsky are well known and the first two are presented in the textbooks of Strength of Materials. Both Tresca and Schmidt-Ishlinsky criteria have a hexagonal symmetry and the criterion of von Mises has a rotational symmetry in the \(\uppi \)-plane. These criteria do not distinguish between tension and compression (no strength differential effect), but numerous problems are treated in the engineering practice using these criteria. In this paper the yield criteria with hexagonal symmetry for incompressible material behavior are compared. For this purpose, their geometries in the \(\uppi \)-plane will be presented in polar coordinates. The radii at the angles of \(15^\circ \) and \(30^\circ \) will be related to the radius at \(0^\circ \). Based on these two relations, these and other known criteria will be shown in one diagram. In this diagram the extreme shapes of the yield surfaces are restricted by two criteria: the Unified Yield Criterion (UYC) and the Multiplicative Ansatz Criterion (MAC). The models with hexagonal symmetry in the \(\uppi \)-plane for incompressible materials can be formulated in the shear stress space. For this formulation platonic, archimedean and catalan solids with orthogonal symmetry planes are used. The geometrical relations of such models in the \(\uppi \)-plane will be depicted in the above mentioned diagram. The examination of the yield surfaces leads to the generalized criterion with two parameters. This model describes all possible convex forms with hexagonal symmetry. The proposed way to look at the yield criteria simplifies the selection of a proper criterion. The extreme solutions for the analysis of structural members can be found using these criteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://mathworld.wolfram.com/PlatonicSolid.html

  2. 2.

    http://mathworld.wolfram.com/ArchimedeanSolid.html

  3. 3.

    http://mathworld.wolfram.com/CatalanSolid.html

References

  1. Adam, P., Wyss, A.: Platonische und archimedische Körper, ihre sternformen und polaren gebilde. Haupt Verlag, Bern (1994)

    MATH  Google Scholar 

  2. Altenbach, H., Altenbach, J., Zolochevsky, A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)

    Google Scholar 

  3. Annin, B.D.: Theory of ideal plasticity with a singular yield surface. J. Appl. Mech. Tech. Phys. 40(2), 347–353 (1999)

    Article  MathSciNet  Google Scholar 

  4. Belyaev, N.M.: Strength of Materials. Mir Publishers, Moscow (1979)

    Google Scholar 

  5. Billington, E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd, Bristol (1986)

    MATH  Google Scholar 

  6. Bolchoun, A., Kolupaev, V.A., Altenbach, H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch Ingenieurwes 75(2), 73–92 (2011)

    Article  Google Scholar 

  7. Burzyński, W.: Studjum nad hipotezami wytężenia. Akademia Nauk Technicznych, Lwów (1928)

    Google Scholar 

  8. Chen, W.F., Zhang, H.: Structural Plasticity - Theory, Problems, and CAE Software. Springer, New York (1991)

    Book  Google Scholar 

  9. Cromwell, P.R.: Polyhedra. Cambridge University Press, New York (1999)

    Google Scholar 

  10. Davis, E.A.: The Bailey flow rule and associated yield surface. J. Appl. Mech. 28(2), 310 (1961)

    Article  Google Scholar 

  11. Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face-centered cubic crytals. J. Appl. Mech. Trans. ASME 21(3), 241–249 (1954)

    MATH  Google Scholar 

  12. Hill, R.: On the inhomogeneous deformation of a plastic lamina in a compression test. Phil. Mag. Series 7 41(319), 733–744 (1950)

    Google Scholar 

  13. Hosford, W.F.: A generalized isotropic yield criterion. J. Appl. Mech. Trans. ASME 39(June), 607–609 (1972)

    Article  Google Scholar 

  14. Hosford, W.F.: On yield loci of anisotropic cubic metals. In: Proceeding of the 7th North American Metalworking Research (NAMRC), vol. 7, pp. 191–196. SME, Dearborn (1979)

    Google Scholar 

  15. Ishlinsky, A.Y.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114 (1940)

    Google Scholar 

  16. Ishlinsky, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja teorija plastichnosti). Fizmatlit, Moscow (2003)

    Google Scholar 

  17. Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojstvach uslovij plastichnosti). J. Appl. Math. Mech. 5, 951–955 (1960)

    Google Scholar 

  18. Ivlev, D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnosti). Nauka, Moscow (1966)

    Google Scholar 

  19. Kolosov, G.V.: On the surfaces showing the distribution of the shear stresses in a point of a continuous deformable body (in Russ.: O poverkhnostjach demonstrirujushhikh raspredelenije srezyvajushhikh usilij v tochke sploshnogo deformiruemogo tela). Prikladnya Matematika i Mekhanika 1(1), 125–126 (1933)

    Google Scholar 

  20. Kolupaev, V.A.: 3D-Creep behaviour of parts made of non-reinforced thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (2006)

    Google Scholar 

  21. Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Mao-Hong Yu to plastics (in German: Anwendung der Unified Strength Theory (UST) von Mao-Hong Yu auf unverstärkte Kunststoffe. In: Grellmann, W. (ed.) Tagung Deformations- und Bruchverhalten von Kunststoffen, vol 12, pp. 320–339. Martin-Luther-Universität Halle-Wittenberg, Merseburg (2009)

    Google Scholar 

  22. Kolupaev, V.A., Altenbach, H.: Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch Ingenieurwes 74(3), 135–166 (2010)

    Article  Google Scholar 

  23. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: New trends in application of strength hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen). Konstruktion, 59–66 (2009)

    Google Scholar 

  24. Lüpfert, H.P.: Schubspannungs-Interpretationen der Festigkeitshypothese von Huber \(/\) v. Mises \(/\) Hencky und ihr Zusammenhang. Technnische Mechanik 12(4), 213–217 (1991)

    Google Scholar 

  25. Mendelson, A.: Plasticity: Theory and Application. Krieger, Malabar (1968)

    Google Scholar 

  26. Mises, R.V.: Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse, pp. 589–592 (1913)

    Google Scholar 

  27. Novozhilov, V.: On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov). Prikladnaja Matematika i Mechanika XV(6), 709–722 (1951)

    Google Scholar 

  28. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)

    Google Scholar 

  29. Paul, B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (ed.) Fracture: an advanced treatise, vol. II, pp. 313–496. Academic Press, New York (1968)

    Google Scholar 

  30. Pisarenko, G.S., Lebedev, A.A.: Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)

    Google Scholar 

  31. Prager, W., Hodge, P.: Theorie ideal plastischer Körper. Springer, Wien (1954)

    Book  MATH  Google Scholar 

  32. Reuss, A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. Zeitschrift für Angewandte Mathematik und Mechanik 13(5), 356–360 (1933)

    Article  MATH  Google Scholar 

  33. Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing Arch 3(3), 215–235 (1932)

    Article  MATH  Google Scholar 

  34. Shesterikov, S.A.: On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja matematika i mechanika, Rossijskaja Akademija Nauk 24(3), 412–415 (1960)

    Google Scholar 

  35. Sokolovsky, V.V.: Theory of Plasticity (in Russ. and English: Teorija plastichnosti). Izdatelstvo Akademii Nauk SSSR, Moscow (1946)

    Google Scholar 

  36. Szczepiński, W., Szlagowski, J.: Plastic Design of Complex Shape Structures. Ellis Horwood Limited and PWN-Polish Scientific Publishers, Chichester, Warszawa (1990)

    Google Scholar 

  37. Tresca, H.: Mémoire sur l’ecoulement des corps solides. Mémoires pres par div sav 18, 75–135 (1868)

    Google Scholar 

  38. Walczak, J.: Nowoczesna miara wytężenia materiału. Archiwum mechaniki stosowanej III, 5–26 (1951)

    Google Scholar 

  39. Wolfram, S.: The Mathematica Book: the Definitive Best-Selling Presentation of Mathematica by the Creator of the System. Wolfram Media, Champaign (2003)

    Google Scholar 

  40. Yu, M.H.: General behaviour of isotropic yield function (in Chinese). Scientific and technological research paper of Xi’an Jiaotong University, pp. 1–11 (1961)

    Google Scholar 

  41. Yu, M.H.: Twin shear stress yield criterion. Int J Mech Sci 25(1), 71–74 (1983a)

    Article  Google Scholar 

  42. Yu, M.H.: Twin shear stress yield criterion. Int J Mech Sci 25(11), 845–846 (1983b)

    Article  Google Scholar 

  43. Yu, M.H.: Engineering Strength Theory (in Chinese). Higher Education Press, Beijing (1999)

    Google Scholar 

  44. Yu, M.H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  45. Yu, M.H.: Linear and non-linear unified strength theory (in Chinese). J Geotech Eng 26(4), 662–669 (2007)

    Google Scholar 

  46. Yu, M.H., Xia, G., Kolupaev, V.A.: Basic characteristics and development of yield criteria for geomaterials. J Rock Mech and Geotech Eng 1(1), 71–88 (2009)

    Google Scholar 

  47. Zhou, X.P., Zhang, Y.X., Wang, L.H.: A new nonlinear yieid criterion. J of Shanghai Jiaotong University (Science) E-9(1), 31–33 (2004)

    Google Scholar 

  48. Źyczkowski, M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publishers, Warszawa (1981)

    Google Scholar 

Download references

Acknowledgments

The first author was supported by the Deutsche Forschungsgemeinschaft (DFG) reference KO 3382/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Kolupaev .

Editor information

Editors and Affiliations

Axiatoric-Deviatoric Invariants

Axiatoric-Deviatoric Invariants

The model of isotropic material behavior \(\Phi \) is a function of three stress invariants, e.g. of the axiatoric-deviatoric invariants [2, 48]

$$\begin{aligned} {\text{I}}_1= {\upsigma }_{{\text{I}}}+{\upsigma }_{{\text{II}}}+{\upsigma }_{{\text{III}}}, \end{aligned}$$
(26)
$$\begin{aligned} {\text{I}}_2^{\prime }=\frac{1}{2\cdot 3}\, \left[ ({\upsigma }_{{\text{I}}}-{\upsigma }_{{\text{II}}})^2+ ({\upsigma }_{{\text{II}}}-{\upsigma }_{{\text{III}}})^2+({\upsigma }_{{\text{III}}}-{\upsigma }_{{\text{I}}})^2 \right] , \end{aligned}$$
(27)
$$\begin{aligned} {\text{I}}_3^{\prime }=\left( {\upsigma }_{{\text{I}}}-\frac{1}{3}\,\text I_1 \right) \left( {\upsigma }_{{\text{II}}}-\frac{1}{3}\,\text I _1 \right) \left( {\upsigma }_{{\text{III}}}-\frac{1}{3}\,\text I _1 \right) . \end{aligned}$$
(28)

The stress angle \({\uptheta }\) [8, 28, 48], cf. [27]

$$\begin{aligned} \cos 3{\uptheta } = \frac{3\sqrt{3}}{2}\frac{\text I_3^{\prime }}{\left( \text I _2^{\prime }\right) ^{3/2}} \end{aligned}$$
(29)

is used quite often instead of \(\text I _3^{\prime }\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolupaev, V.A., Bolchoun, A., Altenbach, H. (2013). Yield Criteria for Incompressible Materials in the Shear Stress Space. In: Öchsner, A., Altenbach, H. (eds) Experimental and Numerical Investigation of Advanced Materials and Structures. Advanced Structured Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-00506-5_6

Download citation

Publish with us

Policies and ethics