Skip to main content

Classification of EEG-Based Brain–Computer Interfaces

  • Chapter
  • First Online:
Advanced Intelligent Computational Technologies and Decision Support Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 486))

Abstract

This chapter demonstrates the development of a brain computer interface (BCI) decision support system for controlling the movement of a wheelchair for neurologically disabled patients using their Electroencephalography (EEG). The subject was able to imagine his/her hand movements during EEG experiment which made EEG oscillations in the signal that could be classified by BCI. The BCI will translate the patient’s thoughts into simple wheelchair commands such as “go” and “stop”. EEG signals are recorded using 59 scalp electrodes. The acquired signals are artifacts contaminated. These artifacts were removed using blind source separation (BSS) by independent component analysis (ICA) to get artifact-free EEG signal from which certain features are extracted by applying discrete wavelet transformation (DWT). The extracted features were reduced in dimensionality using principal component analysis (PCA). The reduced features were fed to neural networks classifier yielding classification accuracy greater than 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R.: Brain-computer interfaces as new brain output pathways. J Physiol. 579(Pt 3), 613–619 (2007)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al.: Brain-computer interfaces for communication and control. Clin Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  3. Kübler, A., Kotchoubey, B., Kaiser, J., et al.: Brain-computer communication: unlocking the locked in. Psychol. Bull. 127(3), 358–375 (2001)

    Article  Google Scholar 

  4. Kauhanen, L., Jylanki, P., Janne, L.J. et al.: EEG-based brain-computer interface for tetraplegics. Comput. Intell. Neurosc. l, 11, Article ID 23864, (2007). doi:10.1155/2007/23864

  5. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., et al.: Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehab. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  6. Gianfelici, F., Farina, D.: An effective classification framework for brain-computer interfacing based on a combinatoric setting. IEEE Trans. Signal Process. 60(3), 1446–1459 (2012)

    Article  MathSciNet  Google Scholar 

  7. Lotte, F., Congedo, M., Lécuyer, A., et al.: Review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng. 4(2), R1–R13 (2007)

    Article  Google Scholar 

  8. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng. 4(2), R32–57 (2007)

    Google Scholar 

  9. Rezaei, S., Tavakolian, K., Nasrabadi, A.M., Setarehdan, S.K.: Different classification techniques considering brain computer interface applications. J Neural Eng. 3(2), 139–144 (2006)

    Article  Google Scholar 

  10. Lemm, S., Blankertz, B., Curio, G., Müller, K.R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)

    Article  Google Scholar 

  11. Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)

    Article  Google Scholar 

  12. Li, Y., Gao, X., Liu, H., Gao, S.: Classification of single-trial electroencephalogram during finger movement. IEEE Trans. Biomed. Eng. 51(6), 1019–1025 (2004)

    Article  Google Scholar 

  13. Sykacek, P., Roberts, S.J., Stokes, M.: Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans. Biomed. Eng. 51(5), 719–727 (2004)

    Article  Google Scholar 

  14. del Millán, J., Mouriño, J.R: Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 159–61 (2003)

    Google Scholar 

  15. Verleger, R., Gasser, T., Möcks, J.: Correction of EOG artifacts in event related potentials of EEG: Aspects of reliability and validity. J. Psychophysiology 19(4), 472–480 (1982)

    Article  Google Scholar 

  16. Makeig, S., Bell, A., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in neural information processing systems, pp. 145–151 (1996)

    Google Scholar 

  17. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iraque, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 27, 163–178 (2000)

    Article  Google Scholar 

  18. Delmore, A., Makeig, S.: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  19. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind deconvolution. J. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  20. Jung, Tzyy-Ping, Makeig, Scott, Humphries, Colin, et al.: Removing electroencephalographic artifacts by blind source separation. J. Psychophysiology 37(2), 163–178 (2000)

    Article  Google Scholar 

  21. Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. J. Neurosc. Lett. 239(2), 65–68 (1997)

    Article  Google Scholar 

  22. Aydemir, O., Kayikcioglu, T.: Wavelet transform based classification o invasive brain computer interface data. Radioengineering 20(1), 31–38 (2011)

    Google Scholar 

  23. Ting, W., Guozheng, Y., Banghua, Y., Hong, S.: EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6), 618–625 (2008)

    Article  Google Scholar 

  24. Lakany, H., Conway, B.A.: Classification of wrist movements using EEG-based wavelets features. In: Proceedings of 27th IEEE EMBS Annual Conference, China, pp. 5404–5407 (2005)

    Google Scholar 

  25. Dong, S.C., Amato, V., Murino, V.: Wavelet-based processing of EEG data for brain-computer interfaces. In: Proceedings of IEEE Computer Society Conference, USA, pp. 74–74 (2005)

    Google Scholar 

  26. Yong, Y.P.A., Hurley, N.J., Silvestre, G.C.M.: Single trial EEG classification for brain-computer interface using wavelet decomposition. In: Procedings of EUSIPCO 2005, Eurasip, Antalya, Turkey, (2005)

    Google Scholar 

  27. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  28. Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y.: Backpropagation: Theory, Architectures, and Applications, Hillsdale, Lawrence Erlbaum Association, New Jersey, pp.1–34 (1995)

    Google Scholar 

  29. Nicolaou, N., Nasuto, S.J.: Temporal independent component analysis for automatic artifact removal from EEG. In: Proceedings of 2nd International Conference on Medical Signal and Information Signal Processing, Sliema, Malta (2004)

    Google Scholar 

  30. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999)

    Article  Google Scholar 

  31. Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Designing optimal spatial filters for single trial EEG during imagined movement. IEEE Trans. Rehab. Eng. 8(4), (2000)

    Google Scholar 

  32. He, S.L., Xiaorong, G., Fusheng, Y., Shangkai, G.: Imagined hand movement identification based on spatio-temporak pattern recognition of EEG. In: IEEE Proceedings on EMBS, pp. 599–602 (2003)

    Google Scholar 

Website

Download references

Acknowledgments

The research of Valentina Emilia Balas was supported by the Bilateral Cooperation Research Project between Bulgaria-Romania (2010-2012) entitled “Electronic Health Records for the Next Generation Medical Decision Support in Romanian and Bulgarian National Healthcare Systems”, NextGenElectroMedSupport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azar, A.T., Balas, V.E., Olariu, T. (2014). Classification of EEG-Based Brain–Computer Interfaces. In: Iantovics, B., Kountchev, R. (eds) Advanced Intelligent Computational Technologies and Decision Support Systems. Studies in Computational Intelligence, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-319-00467-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00467-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00466-2

  • Online ISBN: 978-3-319-00467-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics