Skip to main content

Statistics of Lagrangian Transport Reveals Hidden Features of Velocity Fields

  • Chapter
Preventive Methods for Coastal Protection
  • 1529 Accesses

Abstract

The potential of the systematic use of Lagrangian trajectories to identify normally hidden properties and semi-persistent patterns of the dynamics of surface currents is analysed and tested for the Gulf of Finland and the south-western Baltic Sea. These patterns are highlighted using statistical analysis of a large number of Lagrangian trajectories constructed by using horizontal velocity fields in the uppermost layer generated by three-dimensional circulation models. The evaluation of environmental risks and the identification of patterns of rapid Lagrangian transport rely on a specific discretization of the direct problem of the propagation of passive tracers. This discretization contains several time scales and other parameters, the optimum choice of which is analysed based on examples from the Gulf of Finland. It is shown how the dependence of the overall ratio of net and bulk transport can be used for highlighting the nature of the surface dynamics. Semi-persistent patterns of net transport are identified for the Gulf of Finland using the Rossby Centre Ocean Model (RCO) velocity fields and the offline trajectory model TRACMASS for the time period 1987–1991. Rapid transport pathways are mostly aligned along certain coastal segments but pathways across the gulf are evident in transitional months (March–May and August–October). The results are applicable for estimates of the transport of neutrally buoyant substances in the uppermost layer of the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use here Baltic Proper to denote the open part of the Baltic Sea, consisting of the Northern Gotland Basin, Eastern Gotland Basin, Bornholm Basin and Gdańsk Bay; see Fig. 2.1 in Chap. 2 (Leppäranta and Myrberg 2009).

  2. 2.

    See Chaps. 26 for a definition of this measure and for the discussion of its role in the dynamics.

  3. 3.

    The nature and properties of Ekman transport are presented in more detail in Chap. 2, Sect. 2.3.5.

  4. 4.

    The notion of synoptic motions is used in meteorology to denote weather systems ranging in size from several hundred kilometers to several thousand kilometres. The relevant (synoptic) scale is understood as the scale of migratory high and low pressure systems and is characterized by the so-called baroclinic (internal) Rossby radius. After the discovery of offshore synoptic vortices in the ocean in the 1970s, this notion has been extended to describe the typical scales of such vortices (frequently called mesoscale eddies) and associated phenomena in different water bodies. See, for example, Cushman-Roisin and Beckers (2011) or Chaps. 2 and 6.

  5. 5.

    The inflow and outflow conditions are defined in Lu et al. (2012) as certain patterns of atmospheric forcing and are not directly related with the direction of flow in the Danish Straits.

  6. 6.

    A deeper treatment of the Eulerian and Lagrangian specifications of the flow is presented in Chap. 7. For further information we recommend classical sources such as Batchelor (1973), Lamb (1994).

  7. 7.

    It is, however, equally unwise to trace the trajectories during very long time intervals as short-living patterns will be smoothed out and the properties of the tracked items or substances eventually will change.

  8. 8.

    Here we have in mind patterns of currents or transport that are directly related neither to single synoptic eddies, particular events of coastal (or otherwise topographically controlled) jet currents nor to the mean circulation in the particular basin.

  9. 9.

    The long-term average of this rate becomes explicitly evident below as the long-term average probability of coastal hits for the entire basin, see Chap. 10.

References

  • Abascal AJ, Castanedo S, Medina R, Liste M (2010) Analysis of the reliability of a statistical oil spill response model. Mar Pollut Bull 60:2099–2110

    Article  Google Scholar 

  • Addison PS (2002) The illustrated wavelet transform handbook. Introductory theory and applications in science, engineering, medicine and finance. Taylor & Francis, London

    Book  MATH  Google Scholar 

  • Alenius P, Myrberg K, Nekrasov A (1998) Physical oceanography of the Gulf of Finland: a review. Boreal Environ Res 3:97–125

    Google Scholar 

  • Alenius P, Nekrasov A, Myrberg K (2003) The baroclinic Rossby-radius in the Gulf of Finland. Cont Shelf Res 23:563–573

    Article  Google Scholar 

  • Ambjörn C (2007) Seatrack Web, forecasts of oil spills, a new version. Environ Res Eng Manag 3(41):60–66

    Google Scholar 

  • Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16

    Google Scholar 

  • Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus A 56:548–558

    Article  Google Scholar 

  • Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Est J Eng 16:187–210

    Article  Google Scholar 

  • Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:309–334

    Article  Google Scholar 

  • Anonymous (2002) An updated assessment of the risk for oil spills in the Baltic Sea area. Presented as a Status report on risk analyses for use in response to oil pollution in the Baltic Sea by Dr S Ovsienko, Fifth meeting of the Sea-based Pollution Group HELCOM SEA, Turku, Finland, 13–17 May 2002. Helsinki Commission, Helsinki, 77 pp. http://www.helcom.fi/stc/files/shipping/RiskforOilSpillsReport2002.pdf

  • Ardhuin F, Marie L, Rascle N, Forget P, Roland A (2009) Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838

    Article  Google Scholar 

  • ASCE (American Society of Civil Engineers), ASCE Committee on modeling oil spills, Water Resources Engineering Division (1996) State-of-the-art review of modeling transport and fate of oil spills. J Hydraul Eng 122:594–609

    Article  Google Scholar 

  • Barth JA, Pierce SD, Smith RL (2000) A separating coastal upwelling jet at Cape Blanco, Oregon and its connection to the California Current System. Deep-Sea Res II 47:783–810

    Article  Google Scholar 

  • Batchelor GK (1973) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Beletsky D, Schwab D, McCormick M (2006) Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan. J Geophys Res—Oceans 111:C10010

    Article  Google Scholar 

  • Bisagni JJ, Beardsley RC, Ruhsam CM, Manning JP, Williams WJ (1996) Historical and recent evidence of Scotian Shelf Water on southern Georges Bank. Deep-Sea Res II 43:1439–1471

    Article  Google Scholar 

  • Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: the leeway field method. Appl Ocean Res 33:100–109

    Article  Google Scholar 

  • Breivik Ø, Allen AA, Maisondieu C, Roth JC, Forest B (2012) The leeway of shipping containers at different immersion levels. Ocean Dyn 62:741–752

    Article  Google Scholar 

  • Broman B, Hammarklint T, Rannat K, Soomere T, Valdmann A (2006) Trends and extremes of wave fields in the North-eastern part of the Baltic Proper. Oceanologia 48(S):165–184

    Google Scholar 

  • Broström G, Carrasco A, Hole LR, Dick S, Janssen F, Mattsson J, Berger S (2011) Usefulness of high resolution coastal models for operational oil spill forecast: the Full City accident. Ocean Sci 7:805–820

    Article  Google Scholar 

  • Chrastansky A, Callies U (2009) Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar Pollut Bull 58:967–975

    Article  Google Scholar 

  • Chrastansky A, Callies U, Fleet DM (2009) Estimation of the impact of prevailing weather conditions on the occurrence of oil-contaminated dead birds on the German North Sea coast. Environ Pollut 157:194–198

    Article  Google Scholar 

  • Cushman-Roisin BJ, Beckers J-M (2011) Introduction to geophysical fluid dynamics: physical and numerical aspects. Elsevier/Academic Press, Amsterdam/San Diego, 828 pp

    Google Scholar 

  • Delpeche-Ellmann NC, Soomere T (2013) Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar Pollut Bull 67:121–129

    Article  Google Scholar 

  • de Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Ocean Technol 18:1092–1101

    Article  Google Scholar 

  • Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res—Oceans 100:13,499–13,514

    Google Scholar 

  • Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36

    Article  Google Scholar 

  • Fingas MF (2011) Buoys and devices for oil spill tracking. In: Proceedings of the 34th AMOP technical seminar on environmental contamination and response, environment, Canada, Ottawa, ON, pp 213–228

    Google Scholar 

  • Gästgifvars M, Lauri H, Sarkanen A-K, Myrberg K, Andrejev O, Ambjörn C (2006) Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 70:567–576

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willebrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn 5:211–226

    Article  Google Scholar 

  • Gräwe U, Wolff J-O (2010) Suspended particulate matter dynamics in a particle framework. Environ Fluid Mech 10:21–39

    Article  Google Scholar 

  • Gräwe U, Deleersnijder E, Shah SHAM, Heemink AW (2012) Why the Euler scheme in particle tracking is not enough: the shallow-sea pycnocline test case. Ocean Dyn 62:501–514

    Article  Google Scholar 

  • Havens H, Luther ME, Meyers SD, Heil CA (2010) Lagrangian particle tracking of a toxic dinoflagellate bloom within the Tampa Bay estuary. Mar Pollut Bull 60:2233–2241

    Article  Google Scholar 

  • HELCOM (2009) Ensuring safe shipping in the Baltic. In: Stankiewicz M, Vlasov N (eds) Helsinki commission, Helsinki, 18 pp

    Google Scholar 

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:817–846

    Article  Google Scholar 

  • Höglund A, Meier HEM, Broman B, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 29 pp

    Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  • Jevrejeva S, Leppäranta M (2002) Ice conditions along the Estonian coast in a statistical view. Nord Hydrol 33:241–262

    Google Scholar 

  • Kachel MJ (2008) Particularly sensitive sea areas. Hamburg studies on Maritime Affairs, vol 13. Springer, Berlin, 376 pp

    Chapter  Google Scholar 

  • Keevallik S, Soomere T (2010) Towards quantifying variations in wind parameters across the Gulf of Finland. Est J Earth Sci 59:288–297

    Article  Google Scholar 

  • Killworth P, Stainforth D, Webb D, Paterson S (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Kjellsson J, Döös K (2012) Surface drifters and model trajectories in the Baltic Sea. Boreal Environ Res 17:447–459

    Google Scholar 

  • Korajkic A, Badgley BD, Brownell MJ, Harwood VJ (2009) Application of microbial source tracking methods in a Gulf of Mexico field setting. J Appl Microbiol 107:1518–1527

    Article  Google Scholar 

  • Korotenko KA, Mamedov RM, Kontar AE, Korotenko LA (2004) Particle tracking method in the approach for prediction of oil slick transport in the sea: modelling oil pollution resulting from river input. J Mar Syst 48:159–170

    Article  Google Scholar 

  • Korotenko KA, Bowman MJ, Dietrich DE (2010) High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terr Atmos Ocean Sci 21:123–136

    Article  Google Scholar 

  • Kõuts T, Verjovkina S, Lagemaa P, Raudsepp U (2010) Use of lightweight on-line GPS drifters for surface current and ice drift observations. In: 2010 IEEE/OES US/EU Baltic international symposium, Riga, Latvia, August 25–27, 2010. IEEE Press, New York

    Google Scholar 

  • Kurennoy D, Parnell KE, Soomere T (2011) Fast-ferry generated waves in South-West Tallinn Bay. J Coast Res 64(Special Issue):165–169

    Google Scholar 

  • Lamb H (1994) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54:299–316

    Article  Google Scholar 

  • Leppäranta M (2013) Land-ice interaction in the Baltic Sea. Est J Earth Sci 62:2–14

    Article  Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer Praxis, Berlin, 378 pp

    Book  Google Scholar 

  • Lin CH, Wu YL, Chang KH, Lai CH (2004) A method for locating influential pollution sources and estimating their contributions. Environ Model Assess 9:129–136

    Article  Google Scholar 

  • Lu X, Soomere T, Stanev EV, Murawski J (2012) Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn 62:815–829

    Article  Google Scholar 

  • Mariani P, MacKenzie BR, Iudicone D, Bozec A (2010) Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Prog Oceanogr 86:45–58

    Article  Google Scholar 

  • Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286

    Article  Google Scholar 

  • Meier HEM (2001) On the parameterization of mixing in three-dimensional Baltic Sea models. J Geophys Res—Oceans 106:30,997–31,016

    Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Article  Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res—Oceans 108:3273

    Article  Google Scholar 

  • Melsom A, Counillon F, LaCasce JH, Bertino L (2012) Forecasting search areas using ensemble ocean circulation modelling. Ocean Dyn 62:1245–1257

    Article  Google Scholar 

  • Mietus M (co-ordinator) (1998) The climate of the Baltic Sea Basin, Marine meteorology and related oceanographic activities. Report No 41, World Meteorological Organisation, Geneva, 64 pp

    Google Scholar 

  • Monzon-Argullo C, Lopez-Jurado LF, Rico C, Marco A, Lopez P, Hays GC, Lee PLM (2010) Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. J Biogeogr 37:1752–1766

    Article  Google Scholar 

  • Morey SL, Martin PJ, O’Brien JJ, Wallcraft AA, Zavala-Hidalgo J (2003) Export pathways for river discharged fresh water in the northern Gulf of Mexico. J Geophys Res—Oceans 108:C3303

    Article  Google Scholar 

  • Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15:453–479

    Google Scholar 

  • Ohlmann JC, Mitarai S (2010) Lagrangian assessment of simulated surface current dispersion in the coastal ocean. Geophys Res Lett 37:L17602

    Article  Google Scholar 

  • Osiński R, Piechura J (2009) Latest findings about circulation of upper layer in the Baltic Proper. In: BSSC 2009 abstract book, Tallinn, August 17–21 2009, p 103

    Google Scholar 

  • Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52:417–429

    Article  Google Scholar 

  • Palmén E (1930) Untersuchungen über die Strömungen in den Finnland umgebenden Meeren. Commentationes physico-mathematicae, vol 12. Societas Scientarium Fennica, Helsinki (in German)

    Google Scholar 

  • Parnell KE, Delpeche N, Didenkulova I, Dolphin T, Erm A, Kask A, Kelpšaitė L, Kurennoy D, Quak E, Räämet A, Soomere T, Terentjeva A, Torsvik T, Zaitseva-Pärnaste I (2008) Far-field vessel wakes in Tallinn Bay. Est J Eng 14:273–302

    Article  Google Scholar 

  • Periáñez R (2004) A particle-tracking model for simulating pollutant dispersion in the Strait of Gibraltar. Mar Pollut Bull 49:613–623

    Article  Google Scholar 

  • Reed M, Johansen O, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5:3–16

    Article  Google Scholar 

  • Rohrs J, Christensen KH, Hole LR, Broström G, Drivdal M, Sundby S (2012) Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn 62:1519–1533

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström NE, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Savijärvi H, Niemela S, Tisler P (2005) Coastal winds and low-level jets: simulations for sea gulfs. Q J R Meteorol Soc B 131:625–637

    Article  Google Scholar 

  • Sooäär J, Jaagus J (2007) Long-term variability and changes in the sea ice regime in the Baltic Sea near the Estonian coast. Proc Est Acad Sci, Eng 13:189–200

    Google Scholar 

  • Soomere T, Keevallik S (2001) Anisotropy of moderate and strong winds in the Baltic Proper. Proc Est Acad Sci, Eng 7:35–49

    Google Scholar 

  • Soomere T, Keevallik S (2003) Directional and extreme wind properties in the Gulf of Finland. Proc Est Acad Sci, Eng 9:73–90

    Google Scholar 

  • Soomere T, Quak E (2007) On the potential of reducing coastal pollution by a proper choice of the fairway. J Coast Res 50(Special Issue):678–682

    Google Scholar 

  • Soomere T, Myrberg K, Leppäranta M, Nekrasov A (2008) The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia 50:287–362

    Google Scholar 

  • Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Est Acad Sci 59:156–165

    Article  Google Scholar 

  • Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011a) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63

    Google Scholar 

  • Soomere T, Viidebaum M, Kalda J (2011b) On dispersion properties of surface motions in the Gulf of Finland. Proc Est Acad Sci 60:269–279

    Article  Google Scholar 

  • Soomere T, Berezovski M, Quak E, Viikmäe B (2011c) Modeling environmentally friendly fairways using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea. Ocean Dyn 61:1669–1680

    Article  Google Scholar 

  • Stevens DP (1991) The open boundary condition in the United Kingdom fine-resolution Antarctic Model. J Phys Oceanogr 21:1494–1499

    Article  Google Scholar 

  • Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Prog Oceanogr 82:149–167

    Article  Google Scholar 

  • Verjovkina S, Raudsepp U, Kõuts T, Vahter K (2010) Validation of Seatrack Web using surface drifters in the Gulf of Finland and Baltic Proper. In: 2010 IEEE/OES US/EU Baltic international symposium, Riga, Latvia, August 25–27, 2010. IEEE Press, New York, 7 pp

    Google Scholar 

  • Viikmäe B, Soomere T, Viidebaum M, Berezovski A (2010) Temporal scales for transport patterns in the Gulf of Finland. Est J Eng 16:211–227

    Article  Google Scholar 

  • Webb DJ, Coward AC, de Cuevas BA, Gwilliam CS (1997) A multiprocessor ocean circulation model using message passing. J Atmos Ocean Technol 14:175–183

    Article  Google Scholar 

  • Witham C, Manning A (2007) Impacts of Russian biomass burning on UK air quality. Atmos Environ 41:8075–8090

    Article  Google Scholar 

  • Witting R (1912) Zusammenfassende Übersicht der Hydrographie des Bottnischen und Finnischen Meerbusens und der nördlichen Ostsee nach den Untersuchungen bis Ende 1910, Finnländische hydrographisch-biologische Untersuchungen No 7, 82 pp (in German)

    Google Scholar 

  • Yoon J-H, Kawano S, Igawa S (2010) Modeling of marine litter drift and beaching in the Japan Sea. Mar Pollut Bull 60:448–463

    Article  Google Scholar 

Download references

Acknowledgements

The presented results were obtained in the framework of the BalticWay project, which was supported jointly by the funding from the Estonian Science Foundation and the European Commission’s Seventh Framework Programme (FP7 2007–2013) under grant agreement No. 217246 made with the joint Baltic Sea research and development programme BONUS. The follow-up research was partially supported by the Estonian Science Foundation (grant No. 9125), targeted financing by the Estonian Ministry of Education and Research (grant SF0140007s11), and by the European Regional Development Fund via support to the Centre of Excellence for Non-linear Studies CENS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Soomere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soomere, T. (2013). Statistics of Lagrangian Transport Reveals Hidden Features of Velocity Fields. In: Soomere, T., Quak, E. (eds) Preventive Methods for Coastal Protection. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00440-2_9

Download citation

Publish with us

Policies and ethics