Evaluation and Tuning of Model Trajectories and Spreading Rates in the Baltic Sea Using Surface Drifter Observations

  • Joakim Kjellsson
  • Kristofer Döös
  • Tarmo Soomere

Abstract

Results from experiments with surface drifters in the Baltic Sea in 2010–2011 are presented and discussed. In a first experiment, 12 SVP-B (Surface Velocity Program, with Barometer) drifters with a drogue at 12–18 m depth were deployed in the Baltic Sea. In a second experiment, shallow drifters extending to a depth of 1.5 m were deployed in the Gulf of Finland. Results from the SVP-B drifter experiment are compared to results from a regional ocean model and a trajectory code. Differences between the observed SVP-B drifters and simulated drifters are found for absolute dispersion (i.e., squared displacement from initial position) and relative dispersion (i.e., squared distance between two initially paired drifters). The former is somewhat underestimated since the simulated currents are neither as fast nor as variable as those observed. The latter is underestimated both due to the above-mentioned reasons and due to the resolution of the ocean model.

For the shallower drifters, spreading in the upper 1–2 m of the Gulf of Finland is investigated. The spreading rate is about 200 m/day for separations <0.5 km, 500 m/day for separations below 1 km and in the range of 0.5–3 km/day for separations in the range of 1–4 km. The spreading rate does not follow Richardson’s law. The initial spreading, up to a distance of about d=100–150 m, is governed by the power law dt0.27 whereas for larger separations the distance increases as dt2.5.

References

  1. Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16 Google Scholar
  2. Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Est J Eng 16:187–210 CrossRefGoogle Scholar
  3. Bec J, Gawedzki K, Horvai P (2004) Multifractal clustering in compressible flows. Phys Rev Lett 92:224501 CrossRefGoogle Scholar
  4. Blanke B, Raynaud S (1997) Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagangian approach from GCM results. J Phys Oceanogr 27:1038–1053 CrossRefGoogle Scholar
  5. Corell H, Moksnes PO, Engqvist A, Döös K, Jonsson P (2012) Larval depth distribution critically affects dispersal distance and optimum size for marine protected areas. Mar Ecol Prog Ser 467:29–46 CrossRefGoogle Scholar
  6. Cressman J, Davoudi J, Goldburg W, Schumacher J (2004) Eulerian and Lagrangian studies in surface flow turbulence. New J Phys 6:53 CrossRefGoogle Scholar
  7. de Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Ocean Technol 18:1092–1101 CrossRefGoogle Scholar
  8. Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res—Oceans 100:13,499–13,514 Google Scholar
  9. Döös K, Meier HEM, Döscher R (2004) The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33:261–266 Google Scholar
  10. Döös K, Rupolo V, Brodeau L (2011) Dispersion of surface drifters and model-simulated trajectories. Ocean Model 39:301–310 CrossRefGoogle Scholar
  11. Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:585–597 CrossRefGoogle Scholar
  12. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the regional coupled ocean–atmosphere model RCAO. Boreal Environ Res 7:183–192 Google Scholar
  13. Falkovich G, Gawedzki K, Vergassola M (2001) Particles and fields in fluid turbulence. Rev Mod Phys 73:913–975 MathSciNetMATHCrossRefGoogle Scholar
  14. Funkquist F (2001) HIROMB, an operational eddy-resolving model for the Baltic Sea. Bull Mar Inst Gdańsk 28:7–16 Google Scholar
  15. Garfield N, Maltrud M, Collins C, Rago T, Paquette R (2001) Lagrangian flow in the California Undercurrent, an observation and model comparison. J Mar Syst 29:201–220 CrossRefGoogle Scholar
  16. Garraffo ZD, Mariano AJ, Griffa A, Veneziani C, Chassignet EP (2001) Lagrangian data in a high-resolution numerical simulation of the North Atlantic I. Comparison with in situ drifter data. J Mar Syst 29:157–176 CrossRefGoogle Scholar
  17. Gästgifvars M, Lauri H, Sarkanen A-K, Myrberg K, Andrejev O, Ambjörn C (2006) Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 70:567–576 CrossRefGoogle Scholar
  18. Giudici A, Kalda J, Soomere T (2012) On the compressibility of surface currents in the Gulf of Finland, the Baltic Sea. In: Proceedings of the IEEE/OES Baltic 2012 international symposium “Ocean: past, present and future. Climate change research, ocean observation & advanced technologies for regional sustainability”, Klaipėda, Lithuania, May 8–11, 2012. IEEE Press, New York, 8 pp Google Scholar
  19. Griffa A (1996) Applications of stochastic particle models to oceanographic problems. In: Adler RJ, Müller P, Rozovskii BL (eds) Stochastic modelling in physical oceanography. Birkhäuser Boston, Cambridge, pp 113–140 CrossRefGoogle Scholar
  20. Griffa A, Piterbarg LI, Özgökmen T (2004) Predictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J Mar Res 62:1–35 Google Scholar
  21. Håkansson B, Rahm L (1993) Swedish Lagrangian current experiments. In: Gulf of Bothnia year 1991—physical transport experiments, vol 15, pp 41–55. SMHI, RO Google Scholar
  22. Höglund A, Meier HEM, Broman B, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden Google Scholar
  23. Kalda J (2007) Sticky particles in compressible flows: aggregation and Richardson’s law. Phys Rev Lett 98:064501 CrossRefGoogle Scholar
  24. Kalda J, Soomere T, Giudici A (2013) On the finite-time compressibility of the surface currents in the Gulf of Finland, the Baltic Sea. J Mar Syst. doi:10.1016/j.jmarsys.2012.08.010 Google Scholar
  25. Keevallik S, Soomere T (2010) Towards quantifying variations in wind parameters across the Gulf of Finland. Est J Earth Sci 59:288–297 CrossRefGoogle Scholar
  26. Kjellsson J, Döös K (2012) Surface drifters and model trajectories in the Baltic Sea. Boreal Environ Res 17:447–459 Google Scholar
  27. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre Regional Atmospheric Climate Model (RCA3). Reports meteorology and climatology, vol 108 Google Scholar
  28. Kõuts T, Verjovkina S, Lagemaa P, Raudsepp U (2010) Use of lightweight on-line GPS drifters for surface current and ice drift observations. In: 2010 IEEE/OES US/EU Baltic international symposium, Riga, Latvia, August 25–27, 2010. IEEE Press, New York, 10 pp Google Scholar
  29. Launiainen J, Stipa T, Grönwall H, Vihma T (1993) Finnish Lagrangian current experiments. In: Gulf of Bothnia year 1991—physical transport experiments, vol 15, pp 55–67. SMHI, RO Google Scholar
  30. LaCasce J (2008) Statistics from Lagrangian observations. Prog Oceanogr 77:1–29 CrossRefGoogle Scholar
  31. Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Berlin, 378 pp CrossRefGoogle Scholar
  32. Lin J (1972) Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J Atmos Sci 29:394–396 CrossRefGoogle Scholar
  33. Lumpkin R, Elipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res—Oceans 115:C12017 CrossRefGoogle Scholar
  34. Lumpkin J, Pazos M (2007) Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In: Griffa A, Kirwan A, Mariano A, Özgökmen T, Rossby T (eds) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University Press, New York, pp 39–68 CrossRefGoogle Scholar
  35. Lumpkin R, Treguier AM, Speer K (2002) Lagrangian eddy scales in the Northern Atlantic Ocean. J Phys Oceanogr 32:2425–2440 CrossRefGoogle Scholar
  36. Madec G (2009) NEMO ocean engine. Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 217 pp Google Scholar
  37. McClean JL, Poulain PM, Pelton J, Maltrud ME (2002) Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J Phys Oceanogr 32:2472–2491 CrossRefGoogle Scholar
  38. Meier HEM, Döscher R, Coward AC, Nycander J, Döös K (1999) RCO—Rossby Centre regional Ocean climate model: model description (version 1.0) and first results from the hindcast period 1992/93. SMHI reports oceanography, vol 26 Google Scholar
  39. Meier HEM (2002) Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 1: Model experiments and results for temperature and salinity. Clim Dyn 19:237–253 CrossRefGoogle Scholar
  40. Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627 CrossRefGoogle Scholar
  41. Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res—Oceans 108:C3273 CrossRefGoogle Scholar
  42. Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15:453–479 Google Scholar
  43. Niiler PP, Sybrandy AS, Kenong B, Poulain PM, Bitterman D (1995) Measurements of the water-following capability of holey-sock and tristar drifters. Deep-Sea Res 42:1951–1964 CrossRefGoogle Scholar
  44. Ollitrault M, Gabillet C, Colin de Verdiere A (2005) Open ocean regimes of relative dispersion. J Fluid Mech 533:381–407 MATHCrossRefGoogle Scholar
  45. Orre S, Gjevik B, LaCasce JH (2006) Characterizing chaotic dispersion in a coastal tidal model. Cont Shelf Res 26:1360–1374 CrossRefGoogle Scholar
  46. Pizzigalli C, Rupolo V, Lombardi E, Blanke B (2007) Seasonal probability dispersion maps in the Mediterranean Sea obtained from the Mediterranean forecasting system Eulerian velocity fields. J Geophys Res—Oceans 112:C05012 CrossRefGoogle Scholar
  47. Poje AC, Haza AC, Özgökmen TM, Magaldi MG, Garraffo ZD (2010) Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model 31:36–50 CrossRefGoogle Scholar
  48. Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc A 110:709–737 CrossRefGoogle Scholar
  49. Rupolo V (2007) Observing turbulence regimes and Lagrangian dispersal properties in the ocean. In: Griffa A, Kirwan A, Mariano A, Özgökmen T, Rossby T (eds) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University Press, New York, pp 231–275 CrossRefGoogle Scholar
  50. Salazar JPLC, Collins LR (2009) Two-particle dispersion in isotropic turbulent flows. Annu Rev Fluid Mech 41:405–432 MathSciNetCrossRefGoogle Scholar
  51. Skvortsov A, Jamriska M, DuBois TC (2010) Scaling laws of passive tracer dispersion in the turbulent surface layer. Phys Rev E 82:056304 CrossRefGoogle Scholar
  52. Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Est Acad Sci 59:156–165 CrossRefGoogle Scholar
  53. Soomere T, Viidebaum M, Kalda J (2011) On dispersion properties of surface motions in the Gulf of Finland. Proc Est Acad Sci 60:269–279 CrossRefGoogle Scholar
  54. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012 CrossRefGoogle Scholar
  55. Verjovkina S, Raudsepp U, Kõuts T, Vahter K (2010) Validation of Seatrack Web using surface drifters in the Gulf of Finland and Baltic Proper. In: 2010 IEEE/OES US/EU Baltic international symposium, Riga, Latvia, August 25–27, 2010. IEEE Press, New York, 7 pp Google Scholar
  56. Webb DJ, Coward AC, de Cuevas BA, Gwilliam GS (1997) A multiprocessor ocean circulation model using message passing. J Atmos Ocean Technol 14:175–183 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Joakim Kjellsson
    • 1
  • Kristofer Döös
    • 1
  • Tarmo Soomere
    • 2
    • 3
  1. 1.Department of Meteorology, Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
  2. 2.Wave Engineering LaboratoryInstitute of Cybernetics at Tallinn University of TechnologyTallinnEstonia
  3. 3.Estonian Academy of SciencesTallinnEstonia

Personalised recommendations