Skip to main content

Freiman Homomorphisms Revisited

  • Chapter
Structural Additive Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 30))

  • 1246 Accesses

Abstract

Recall that if A 1,…,A n G are nonempty subsets of an abelian group G translated so that \(0\in\bigcap_{i=1}^{n}A_{i}\), then a normalized Freiman homomorphism of \(\sum _{i=1}^{n}A_{i}\) is a map \(\psi :\sum _{i=1}^{n}A_{i}\rightarrow G'\), where G′ is another abelian group, such that

$$\psi(0)=0\quad\;\mbox{ and } \;\quad\psi\Biggl(\sum _{i=1}^{n}a_i\Biggr)=\sum _{i=1}^{n}\psi (a_i)\quad\mbox{ for } a_i\in A_i. $$

We will sometimes abbreviate the fact that the sumsets \(\sum _{i=1}^{n}A_{i}\) and \(\sum _{i=1}^{n}A'_{i}\) are Freiman isomorphic by writing

$$\sum _{i=1}^{n}A_i\cong \sum _{i=1}^{n}A'_i. $$

In such case, there exists a i A i and \(a'_{i}\in A'_{i}\) and a normalized Freiman isomorphism \(\psi:\sum _{i=1}^{n}(-a_{i}+A_{i})\rightarrow \sum _{i=1}^{n}(-a'_{i}+A'_{i})\).

The goal of this chapter is to develop a basic theory of Freiman homomorphisms by introducing an algebraic invariant, the Universal Ambient Group (UAG), for a sumset \(\sum _{i=1}^{n} A_{i}\). Among other things, this then allows us to show that sufficiently small subsets of an arbitrary abelian group have their sumset isomorphic to an integer sumset, which should be compared with previous results showing that any finite torsion-free sumset is isomorphic to an integer sumset. We will also show that any torsion-free sumset has a compact representation, derive several short exact sequences, derive an upper bound for the torsion subgroup of the UAG, and calculate the UAG under various small sumset hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.F. Bilu, V.F. Lev, I.Z. Ruzsa, Rectification principles in additive number theory. Discrete Comput. Geom. 19(3), Special Issue, 343–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. P.A. Garcia-Sanchez, J.C. Rosales, Finitely Generated Commutative Monoids (Nova Science Publishers, Commack, 1999)

    MATH  Google Scholar 

  3. P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North-Holland Mathematical Library (Elsevier, Amsterdam, 1987)

    MATH  Google Scholar 

  4. D.J. Grynkiewicz, Theory of Freiman homomorphisms and the universal ambient group. Manuscript

    Google Scholar 

  5. T.W. Hungerford, Algebra. Graduate Texts in Mathematics, vol. 73 (Springer, New York, 2000)

    Google Scholar 

  6. C.R. Johnson, M. Newman, A surprising determinant inequality for real matrices. Math. Ann. 247, 179–186 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.V. Konyagin, V.F. Lev, Combinatorics and linear algebra of Freiman’s isomorphism. Mathematika 47(1–2), 39–51 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Lang, Algebra, revised 3rd edn. Graduate Texts in Mathematics, vol. 211 (Springer, Ann Arbor, 2002)

    Book  MATH  Google Scholar 

  9. V. Lev, Simultaneous approximations and covering by arithmetic progressions in \(\mathbb{F}_{p}\). J. Comb. Theory, Ser. A 92(2), 103–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Lev, The rectifiability threshold in abelian groups. Combinatorica 28(4), 491–497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Mahler, On Minkowski’s theory of reduction of positive definite quadratic forms. Q. J. Math. 9, 259–262 (1938)

    Article  Google Scholar 

  12. K. Mahler, A theorem on inhomogenous Diophantine inequalities. Proc. K. Ned. Akad. Wet. 41, 634–637 (1938)

    Google Scholar 

  13. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Springer, Harrisonburg, 1996)

    Book  MATH  Google Scholar 

  14. I. Ruzsa, Sums of sets in several dimensions. Combinatorica 14, 485–490 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Schinzel, An inequality for determinants with real entries. Colloq. Math. 38(2), 319–321 (1977/78)

    MathSciNet  Google Scholar 

  16. T. Tao, V. Vu, Additive Combinatorics (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grynkiewicz, D.J. (2013). Freiman Homomorphisms Revisited. In: Structural Additive Theory. Developments in Mathematics, vol 30. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00416-7_20

Download citation

Publish with us

Policies and ethics