Skip to main content

Thermodynamic Systems

  • Chapter
Computational Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 84k Accesses

Abstract

An important application for computer simulations is the calculation of thermodynamic averages in an equilibrium system. We discuss two different examples. In the first case the classical equations of motion are solved for a system of particles interacting pairwise by Lennard-Jones forces (Lennard-Jones fluid). The thermodynamic average is taken along the trajectory, i.e. over the calculated coordinates at different times. The inner virial is compared to the virial expansion of the Lennard-Jones system. The pair distance distribution function characterizes the order of the system. Velocity auto-correlation function and mean square displacement are compared with the Brownian model of diffusive motion.

In the second case the Metropolis method is applied to a one- or two-dimensional system of interacting spins (Ising model). The thermodynamic average is taken over a set of random configurations. The average magnetization in a magnetic field and the phase transition to the ferromagnetic state are compared with analytical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This small number of particles allows a graphical representation of the system during the simulation.

  2. 2.

    MD simulations with periodic boundary conditions use this equation to calculate the pressure.

  3. 3.

    Or try one spin after the other.

References

  1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, London, 1989). ISBN 0-19-855645-4

    Google Scholar 

  2. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  3. K. Binder, Ising model, in Encyclopedia of Mathematics, Suppl. vol. 2, ed. by R. Hoksbergen (Kluwer Academic, Dordrecht, 2000), pp. 279–281

    Google Scholar 

  4. J.R. Errington, P.G. Debenedetti, S. Torquato, J. Chem. Phys. 118, 2256 (2003)

    Article  ADS  Google Scholar 

  5. J.-P. Hansen, L. Verlet, Phys. Rev. 184, 151 (1969)

    Article  ADS  Google Scholar 

  6. P.H. Huenenberger, Adv. Polym. Sci. 173, 105 (2005)

    Article  Google Scholar 

  7. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925). doi:10.1007/BF02980577

    Google Scholar 

  8. J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78, 591 (1993)

    Article  ADS  Google Scholar 

  9. S.A. Khrapak, M. Chaudhuri, G.E. Morfill, Phys. Rev. B 82, 052101 (2010)

    Article  ADS  Google Scholar 

  10. D. Levesque, L. Verlet, Phys. Rev. A 2, 2514 (1970)

    Article  ADS  Google Scholar 

  11. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973). ISBN 0674914406

    MATH  Google Scholar 

  12. C. Muguruma, Y. Okamoto, M. Mikami, Croat. Chem. Acta 80, 203 (2007)

    Google Scholar 

  13. J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37, 1429 (1979)

    Article  ADS  Google Scholar 

  14. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  16. F. Schwabl, Statistical Mechanics (Springer, Berlin, 2003)

    Google Scholar 

  17. B. Smit, J. Chem. Phys. 96, 8639 (1992)

    Article  ADS  Google Scholar 

  18. T. Tsang, H. Tang, Phys. Rev. A 15, 1696 (1977)

    Article  ADS  Google Scholar 

  19. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  20. H. Watanabe, N. Ito, C.K. Hu, J. Chem. Phys. 136, 204102 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scherer, P.O.J. (2013). Thermodynamic Systems. In: Computational Physics. Graduate Texts in Physics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00401-3_15

Download citation

Publish with us

Policies and ethics