Thermodynamic Systems

  • Philipp O. J. Scherer
Part of the Graduate Texts in Physics book series (GTP)


An important application for computer simulations is the calculation of thermodynamic averages in an equilibrium system. We discuss two different examples. In the first case the classical equations of motion are solved for a system of particles interacting pairwise by Lennard-Jones forces (Lennard-Jones fluid). The thermodynamic average is taken along the trajectory, i.e. over the calculated coordinates at different times. The inner virial is compared to the virial expansion of the Lennard-Jones system. The pair distance distribution function characterizes the order of the system. Velocity auto-correlation function and mean square displacement are compared with the Brownian model of diffusive motion.

In the second case the Metropolis method is applied to a one- or two-dimensional system of interacting spins (Ising model). The thermodynamic average is taken over a set of random configurations. The average magnetization in a magnetic field and the phase transition to the ferromagnetic state are compared with analytical expressions.


Ising Model Average Magnetization Random Configuration Brownian Model Berendsen Thermostat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, London, 1989). ISBN 0-19-855645-4 Google Scholar
  2. 21.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  3. 26.
    K. Binder, Ising model, in Encyclopedia of Mathematics, Suppl. vol. 2, ed. by R. Hoksbergen (Kluwer Academic, Dordrecht, 2000), pp. 279–281 Google Scholar
  4. 78.
    J.R. Errington, P.G. Debenedetti, S. Torquato, J. Chem. Phys. 118, 2256 (2003) ADSCrossRefGoogle Scholar
  5. 118.
    J.-P. Hansen, L. Verlet, Phys. Rev. 184, 151 (1969) ADSCrossRefGoogle Scholar
  6. 128.
    P.H. Huenenberger, Adv. Polym. Sci. 173, 105 (2005) CrossRefGoogle Scholar
  7. 134.
    E. Ising, Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925). doi: 10.1007/BF02980577 Google Scholar
  8. 142.
    J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78, 591 (1993) ADSCrossRefGoogle Scholar
  9. 146.
    S.A. Khrapak, M. Chaudhuri, G.E. Morfill, Phys. Rev. B 82, 052101 (2010) ADSCrossRefGoogle Scholar
  10. 159.
    D. Levesque, L. Verlet, Phys. Rev. A 2, 2514 (1970) ADSCrossRefGoogle Scholar
  11. 171.
    B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973). ISBN 0674914406 zbMATHGoogle Scholar
  12. 176.
    C. Muguruma, Y. Okamoto, M. Mikami, Croat. Chem. Acta 80, 203 (2007) Google Scholar
  13. 182.
    J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37, 1429 (1979) ADSCrossRefGoogle Scholar
  14. 194.
    L. Onsager, Phys. Rev. 65, 117 (1944) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 219.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989) zbMATHCrossRefGoogle Scholar
  16. 231.
    F. Schwabl, Statistical Mechanics (Springer, Berlin, 2003) Google Scholar
  17. 239.
    B. Smit, J. Chem. Phys. 96, 8639 (1992) ADSCrossRefGoogle Scholar
  18. 256.
    T. Tsang, H. Tang, Phys. Rev. A 15, 1696 (1977) ADSCrossRefGoogle Scholar
  19. 265.
    L. Verlet, Phys. Rev. 159, 98 (1967) ADSCrossRefGoogle Scholar
  20. 270.
    H. Watanabe, N. Ito, C.K. Hu, J. Chem. Phys. 136, 204102 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Philipp O. J. Scherer
    • 1
  1. 1.Physikdepartment T38Technische Universität MünchenGarchingGermany

Personalised recommendations