Interpreting the Omics ‘era’ Data

  • Georgios A. Pavlopoulos
  • Ernesto Iacucci
  • Ioannis Iliopoulos
  • Pantelis Bagos
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 25)

Abstract

The analysis and the interpretation of the complex and dynamic biological systems has become a major bottleneck nowadays. The latest high-throughput “omics” approaches, such as genomics, proteomics and transcriptomics and the available data repositories hosting information concerning bioentities and their properties grow exponentially in size over time. Therefore, to better understand biological systems as a whole and at a higher level, visualization is a necessity as clear and meaningful views and intuitive layouts can give a better insight into coping with data complexity. The implementation of tools to maximize user friendliness, portability and provide intuitive views is a difficult task and still remains a hurdle to overcome. In this chapter, we present a variety of significant visualization tools as they specialize in different topics covering different areas of the broad biological spectrum varying from visualization of molecular structures to phylogenies, pathways, gene expression, networks, and next generation sequencing. We emphasize their functionality, the latest research findings, and insights into how these tools could be further developed both in terms of visualization but also in the direction of data integration and information sharing.

Notes

Acknowledgments

We would like to acknowledge Dr. Theodoros Soldatos, Dr. Charalampos Moschopoulos and Mgr. Izabella Januszewska for their valuable input. This work was supported by the Greek State Scholarship Foundation (I.K.Y—http://www.iky.gr/IKY/portal/en).

References

  1. 1.
    Berman, H., Henrick, K., Nakamura, H.: Announcing the world wide Protein Data Bank. Nat. Struct. Biol. 10(12), 980 (2003)CrossRefGoogle Scholar
  2. 2.
    O’Donoghue, S.I., Goodsell, D.S., Frangakis, A.S., Jossinet, F., Laskowski, R.A., Nilges, M., Saibil, H.R., Schafferhans, A., Wade, R.C., Westhof, E., Olson, A.J.: Visualization of macromolecular structures. Nat. Methods 7(Suppl 3), S42–S55 (2010)CrossRefGoogle Scholar
  3. 3.
    Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.H., Srinivasan, A.R., Schneider, B.: The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63(3), 751–759 (1992)CrossRefGoogle Scholar
  4. 4.
    Tate, J.: Molecular visualization. Methods Biochem. Anal. 44, 135–158 (2003)Google Scholar
  5. 5.
    Olson, A.J., Pique, M.E.: Visualizing the future of molecular graphics. SAR QSAR Environ. Res. 8(3–4), 233–247 (1998)CrossRefGoogle Scholar
  6. 6.
    Goddard, T.D., Ferrin, T.E.: Visualization software for molecular assemblies. Curr. Opin. Struct. Biol. 17(5), 587–595 (2007)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Richardson, D.C., Richardson, J.S.: The kinemage: A tool for scientific communication. Protein Sci. 1(1), 3–9 (1992)CrossRefGoogle Scholar
  10. 10.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRefGoogle Scholar
  11. 11.
    O’Donoghue, S.I., Meyer, J.E., Schafferhans, A., Fries, K.: The SRS 3D module: Integrating structures, sequences and features. Bioinformatics 20(15), 2476–2478 (2004)CrossRefGoogle Scholar
  12. 12.
    Gille, C., Frommel, C.: STRAP: Editor for STRuctural alignments of proteins. Bioinformatics 17(4), 377–378 (2001)CrossRefGoogle Scholar
  13. 13.
    Porter, S.G., Day, J., McCarty, R.E., Shearn, A., Shingles, R., Fletcher, L., Murphy, S., Pearlman, R.: Exploring DNA structure with Cn3D. CBE Life Sci. Educ. 6(1), 65–73 (2007)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Geer, L.Y., Chappey, C., Kans, J.A., Bryant, S.H.: Cn3D: Sequence and structure views for Entrez. Trends Biochem. Sci. 25(6), 300–302 (2000)CrossRefGoogle Scholar
  15. 15.
    Hogue, C.W.: Cn3D: A new generation of three-dimensional molecular structure viewer. Trends Biochem. Sci. 22(8), 314–316 (1997)CrossRefGoogle Scholar
  16. 16.
    Guex, N., Peitsch, M.C., Schwede, T.: Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30(Suppl 1), S162–S173 (2009)CrossRefGoogle Scholar
  17. 17.
    Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997)CrossRefGoogle Scholar
  18. 18.
    Esnouf, R.M.: An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15(2), 132–134, 112–133 (1997)Google Scholar
  19. 19.
    Sanner, M.F.: A component-based software environment for visualizing large macromolecular assemblies. Structure 13(3), 447–462 (2005)CrossRefGoogle Scholar
  20. 20.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14(1), 33–38, 27–38 (1996)Google Scholar
  21. 21.
  22. 22.
    Merritt, E.A., Murphy, M.E.: Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50(Pt 6), 869–873 (1994)CrossRefGoogle Scholar
  23. 23.
    Koradi, R., Billeter, M., Wuthrich, K.: MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14(1), 51–55, 29–32 (1996)Google Scholar
  24. 24.
    Russell, R.B., Barton, G.J.: Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins 14(2), 309–323 (1992)CrossRefGoogle Scholar
  25. 25.
    Theobald, D.L., Wuttke, D.S.: THESEUS: Maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22(17), 2171–2172 (2006)CrossRefGoogle Scholar
  26. 26.
    Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: An efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)CrossRefGoogle Scholar
  27. 27.
    Gabdoulline, R.R., Ulbrich, S., Richter, S., Wade, R.C.: ProSAT2–protein structure annotation server. Nucleic Acids Res. 34(Web Server issue), W79–W83 (2006)Google Scholar
  28. 28.
    Reichert, J., Suhnel, J.: The IMB Jena image library of biological macromolecules: 2002 update. Nucleic Acids Res. 30(1), 253–254 (2002)CrossRefGoogle Scholar
  29. 29.
    Laskowski, R.A.: Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics 23(14), 1824–1827 (2007)CrossRefGoogle Scholar
  30. 30.
    Vriend, G.: WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 8(1), 52–56, 29 (1990)Google Scholar
  31. 31.
    Gunther, J., Bergner, A., Hendlich, M., Klebe, G.: Utilising structural knowledge in drug design strategies: Applications using Relibase. J. Mol. Biol. 326(2), 621–636 (2003)CrossRefGoogle Scholar
  32. 32.
    Hendlich, M., Bergner, A., Gunther, J., Klebe, G.: Relibase: Design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 326(2), 607–620 (2003)CrossRefGoogle Scholar
  33. 33.
    Michalsky, E., Dunkel, M., Goede, A., Preissner, R.: SuperLigands—a database of ligand structures derived from the Protein Data Bank. BMC Bioinf. 6, 122 (2005)CrossRefGoogle Scholar
  34. 34.
    Seeliger, D., De Groot, B.L.: tCONCOORD-GUI: Visually supported conformational sampling of bioactive molecules. J. Comput. Chem. 30(7), 1160–1166 (2009)CrossRefGoogle Scholar
  35. 35.
    Thorpe, M.F., Lei, M., Rader, A.J., Jacobs, D.J., Kuhn, L.A.: Protein flexibility and dynamics using constraint theory. J. Mol. Graph. Model. 19(1), 60–69 (2001)CrossRefGoogle Scholar
  36. 36.
    Maiti, R., Van Domselaar, G.H., Wishart, D.S.: MovieMaker: A web server for rapid rendering of protein motions and interactions. Nucleic Acids Res. 33(Web Server issue), W358–W362 (2005)Google Scholar
  37. 37.
    Flores, S., Echols, N., Milburn, D., Hespenheide, B., Keating, K., Lu, J., Wells, S., Yu, E.Z., Thorpe, M., Gerstein, M.: The Database of Macromolecular Motions: New features added at the decade mark. Nucleic Acids Res. 34(Database issue), D296–D301 (2006)Google Scholar
  38. 38.
    Lindahl, E., Azuara, C., Koehl, P., Delarue, M.: NOMAD-Ref: Visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 34(Web Server issue), W52–W56 (2006)Google Scholar
  39. 39.
    Eyal, E., Yang, L.W., Bahar, I.: Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics 22(21), 2619–2627 (2006)CrossRefGoogle Scholar
  40. 40.
    Jossinet, F., Westhof, E.: Sequence to structure (S2S): Display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15), 3320–3321 (2005)CrossRefGoogle Scholar
  41. 41.
    Pavlopoulos, G.A., Soldatos, T.G., Barbosa-Silva, A., Schneider, R.: A reference guide for tree analysis and visualization. BioData Min. 3(1), 1 (2010)CrossRefGoogle Scholar
  42. 42.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  43. 43.
    Bodenreider, O.: The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(Database issue), D267–D270 (2004)Google Scholar
  44. 44.
    Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765), 1283–1287 (2006)CrossRefGoogle Scholar
  45. 45.
    Pennisi, E.: Modernizing the tree of life. Science 300(5626), 1692–1697 (2003)CrossRefGoogle Scholar
  46. 46.
    Schmidt, M.T., Handschuh, L., Zyprych, J., Szabelska, A., Olejnik-Schmidt, A.K., Siatkowski, I., Figlerowicz, M.: Impact of DNA microarray data transformation on gene expression analysis—comparison of two normalization methods. Acta Biochim. Pol. 58(4), 573–580 (2011)Google Scholar
  47. 47.
    Geller, S.C., Gregg, J.P., Hagerman, P., Rocke, D.M.: Transformation and normalization of oligonucleotide microarray data. Bioinformatics 19(14), 1817–1823 (2003)CrossRefGoogle Scholar
  48. 48.
    Quackenbush, J.: Microarray data normalization and transformation. Nat. Genet. 32(Suppl), 496–501 (2002)CrossRefGoogle Scholar
  49. 49.
    Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)CrossRefGoogle Scholar
  50. 50.
    Sneath, P.H.A., Sokal, R.R.: Unweighted pair group method with arithmetic mean. Numer. Taxonomy, 230–234 (1973)Google Scholar
  51. 51.
    Gascuel, O., Steel, M.: Neighbor-joining revealed. Mol. Biol. Evol. 23(11), 1997–2000 (2006)CrossRefGoogle Scholar
  52. 52.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)Google Scholar
  53. 53.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  54. 54.
    Edgar, R.C.: MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)CrossRefGoogle Scholar
  55. 55.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)Google Scholar
  56. 56.
    Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)CrossRefGoogle Scholar
  57. 57.
    Cardona, G., Rossello, F., Valiente, G.: Extended Newick: It is time for a standard representation of phylogenetic networks. BMC Bioinf. 9, 532 (2008)CrossRefGoogle Scholar
  58. 58.
    Maddison, D.R., Swofford, D.L., Maddison, W.P.: NEXUS: An extensible file format for systematic information. Syst. Biol. 46(4), 590–621 (1997)CrossRefGoogle Scholar
  59. 59.
    Han, M.V., Zmasek, C.M.: phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinf. 10, 356 (2009)CrossRefGoogle Scholar
  60. 60.
    Procter, J.B., Thompson, J., Letunic, I., Creevey, C., Jossinet, F., Barton, G.J.: Visualization of multiple alignments, phylogenies and gene family evolution. Nat. Methods 7(Suppl 3), S16–S25 (2010)CrossRefGoogle Scholar
  61. 61.
    Schneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11, 92–99 (1992)CrossRefGoogle Scholar
  62. 62.
    Page, R.D.: Space, time, form: Viewing the tree of life. Trends Ecol. Evol. 27(2), 113–120 (2012)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Zmasek, C.M., Eddy, S.R.: ATV: Display and manipulation of annotated phylogenetic trees. Bioinformatics 17(4), 383–384 (2001)CrossRefGoogle Scholar
  64. 64.
    Page, R.D.: TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12(4), 357–358 (1996)Google Scholar
  65. 65.
    Goloboff, P.A., Catalano, S.A., Mirande, J.M., Szumik, C.A., Arias, J.S., Källersjö, M., Farris, J.S.: Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics 25(3), 211–230 (2009)CrossRefGoogle Scholar
  66. 66.
    Heer, J., Card, S.K.: DOITrees revisited: Scalable, space-constrained visualization of hierarchical data. In: AVI ‘04 Proceedings of the Working Conference on Advanced Visual Interfaces (2004)Google Scholar
  67. 67.
    Parr, C.S., Lee, B., Campbell, D., Bederson, B.B.: Visualizations for taxonomic and phylogenetic trees. Bioinformatics 20(17), 2997–3004 (2004)CrossRefGoogle Scholar
  68. 68.
    Michael, J.M., Gord, D., Ravin, B.: Expand-ahead: A space-filling strategy for browsing trees. In: INFOVIS ‘04 Proceedings of the IEEE Symposium on Information Visualization 2004, pp. 119–126. (2004)Google Scholar
  69. 69.
    Bingham, J., Sudarsanam, S.: Visualizing large hierarchical clusters in hyperbolic space. Bioinformatics 16(7), 660–661 (2000)CrossRefGoogle Scholar
  70. 70.
    Hughes, T., Hyun, Y., Liberles, D.A.: Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinf. 5, 48 (2004)CrossRefGoogle Scholar
  71. 71.
    Letunic, I., Bork, P.: Interactive tree of life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39(Web Server issue), W475–W478 (2011)Google Scholar
  72. 72.
    Chevenet, F., Brun, C., Banuls, A.L., Jacq, B., Christen, R.: TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinf. 7, 439 (2006)CrossRefGoogle Scholar
  73. 73.
    Pethica, R., Barker, G., Kovacs, T., Gough, J.: TreeVector: Scalable, interactive, phylogenetic trees for the web. PLoS ONE 5(1), e8934 (2010)CrossRefGoogle Scholar
  74. 74.
    Huson, D.H., Richter, D.C., Rausch, C., Dezulian, T., Franz, M., Rupp, R.: Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinf. 8, 460 (2007)CrossRefGoogle Scholar
  75. 75.
    Sanderson, M.J.: Paloverde: An OpenGL 3D phylogeny browser. Bioinformatics 22(8), 1004–1006 (2006)CrossRefGoogle Scholar
  76. 76.
    Kidd, D.M., Ritchie, M.G.: Phylogeographic information systems: Putting the geography into phylogeography. J. Biogeogr. 33(11), 1851–1865 (2006)CrossRefGoogle Scholar
  77. 77.
    Kidd, D.M.: Geophylogenies and the map of life. Syst. Biol. 59(6), 741–752 (2010)CrossRefGoogle Scholar
  78. 78.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto et al. : Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-parameter tractability. 16th international symposium on graph drawing, Heraklion, Lecture Notes in Computer Science 5417 (2008)Google Scholar
  79. 79.
    Puigbo, P., Wolf, Y.I., Koonin, E.V.: Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J. Biol. 8(6), 59 (2009)CrossRefGoogle Scholar
  80. 80.
    Tanner, C.C., Migdal, C.J., Jones, M.T.: The clipmap: A virtual mipmap. In: SIGGRAPH ‘98 Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998)Google Scholar
  81. 81.
    Collins, F.S., et al.: Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931–945 (2004)CrossRefGoogle Scholar
  82. 82.
    Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)CrossRefGoogle Scholar
  83. 83.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J., Gabor Miklos, G.L., Nelson, C., Broder, S., Clark, A.G., Nadeau, J., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W., Gong, F., Gu, Z., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z., Ketchum, K.A., Lai, Z., Lei, Y., Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C., Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W., Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001)Google Scholar
  84. 84.
    Bennett, S.: Solexa Ltd. Pharmacogenomics 5(4), 433–438 (2004)CrossRefGoogle Scholar
  85. 85.
    Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., Rothberg, J.M.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057), 376–380 (2005)Google Scholar
  86. 86.
    Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRefGoogle Scholar
  87. 87.
    Xie, C., Tammi, M.T.: CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinf. 10, 80 (2009)CrossRefGoogle Scholar
  88. 88.
    Keravala, A., Lee, S., Thyagarajan, B., Olivares, E.C., Gabrovsky, V.E., Woodard, L.E., Calos, M.P.: Mutational derivatives of PhiC31 integrase with increased efficiency and specificity. Mol. Ther. 17(1), 112–120 (2009)CrossRefGoogle Scholar
  89. 89.
    Chiang, D.Y., Getz, G., Jaffe, D.B., O’Kelly, M.J., Zhao, X., Carter, S.L., Russ, C., Nusbaum, C., Meyerson, M., Lander, E.S.: High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6(1), 99–103 (2009)CrossRefGoogle Scholar
  90. 90.
    Kim, T.M., Luquette, L.J., Xi, R., Park, P.J.: rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data. BMC Bioinf. 11, 432 (2010)CrossRefGoogle Scholar
  91. 91.
    Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)CrossRefGoogle Scholar
  92. 92.
    Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald, H., Varhol, R., Jones, S., Marra, M.: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45(1), 81–94 (2008)CrossRefGoogle Scholar
  93. 93.
    Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B.: Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830), 1497–1502 (2007)CrossRefGoogle Scholar
  94. 94.
    Durbin, R.M., Abecasis, G.R., Altshuler, D.L., Auton, A., Brooks, L.D., Gibbs, R.A., Hurles, M.E., McVean, G.A.: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)CrossRefGoogle Scholar
  95. 95.
    Buchanan, C.C., Torstenson, E.S., Bush, W.S., Ritchie, M.D.: A comparison of cataloged variation between International HapMap consortium and 1000 genomes project data. J. Am. Med. Inform. Assoc. 19(2), 289–294 (2012)CrossRefGoogle Scholar
  96. 96.
    Tanaka, T.: International HapMap project. Nihon Rinsho 63(Suppl 12), 29–34 (2005)Google Scholar
  97. 97.
    Thorisson, G.A., Smith, A.V., Krishnan, L., Stein, L.D.: The international HapMap project web site. Genome Res. 15(11), 1592–1593 (2005)CrossRefGoogle Scholar
  98. 98.
    Integrating ethics and science in the international HapMap project. Nat. Rev. Genet. 5(6), 467–475 (2004)Google Scholar
  99. 99.
    The international HapMap project. Nature 426(6968), 789–796 (2003)Google Scholar
  100. 100.
    Stalker, J., Gibbins, B., Meidl, P., Smith, J., Spooner, W., Hotz, H.R., Cox, A.V.: The Ensembl web site: Mechanics of a genome browser. Genome Res. 14(5), 951–955 (2004)CrossRefGoogle Scholar
  101. 101.
    Birney, E., Bateman, A., Clamp, M.E., Hubbard, T.J.: Mining the draft human genome. Nature 409(6822), 827–828 (2001)CrossRefGoogle Scholar
  102. 102.
    Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, D.: The human genome browser at UCSC. Genome Res. 12(6), 996–1006 (2002)Google Scholar
  103. 103.
    Integrative Genomics Viewer: http://www.broadinstitute.org/software/igv/
  104. 104.
    Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S., Aerts, J., Schneider, R., Bagos, P.G.: Using graph theory to analyze biological networks. BioData Min. 4, 10 (2011)CrossRefGoogle Scholar
  105. 105.
    Vikis, H.G., Guan, K.L.: Glutathione-S-transferase-fusion based assays for studying protein–protein interactions. Methods Mol. Biol. 261, 175–186 (2004)Google Scholar
  106. 106.
    Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., Seraphin, B.: The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 24(3), 218–229 (2001)CrossRefGoogle Scholar
  107. 107.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U S A 98(8), 4569–4574 (2001)CrossRefGoogle Scholar
  108. 108.
    Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)CrossRefGoogle Scholar
  109. 109.
    Stoll, D., Templin, M.F., Bachmann, J., Joos, T.O.: Protein microarrays: Applications and future challenges. Curr. Opin. Drug Discov. Devel. 8(2), 239–252 (2005)Google Scholar
  110. 110.
    Willats, W.G.: Phage display: Practicalities and prospects. Plant Mol. Biol. 50(6), 837–854 (2002)CrossRefGoogle Scholar
  111. 111.
    Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 4, 2 (2003)CrossRefGoogle Scholar
  112. 112.
    Pavlopoulos, G.A., Moschopoulos, C.N., Hooper, S.D., Schneider, R., Kossida, S.: jClust: A clustering and visualization toolbox. Bioinformatics 25(15), 1994–1996 (2009)CrossRefGoogle Scholar
  113. 113.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. U S A 100(21), 12123–12128 (2003)CrossRefGoogle Scholar
  114. 114.
    Li, X.L., Tan, S.H., Foo, C.S., Ng, S.K.: Interaction graph mining for protein complexes using local clique merging. Genome Inf. 16(2), 260–269 (2005)Google Scholar
  115. 115.
    Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinf. 7, 207 (2006)CrossRefGoogle Scholar
  116. 116.
    Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)CrossRefGoogle Scholar
  117. 117.
    Mete, M., Tang, F., Xu, X., Yuruk, N.: A structural approach for finding functional modules from large biological networks. BMC Bioinf. 9(Suppl 9), S19 (2008)CrossRefGoogle Scholar
  118. 118.
    Adamcsek, B., Palla, G., Farkas, I.J., Derenyi, I., Vicsek, T.: CFinder: Locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)CrossRefGoogle Scholar
  119. 119.
    Moschopoulos, C.N., Pavlopoulos, G.A., Schneider, R., Likothanassis, S.D., Kossida, S.: GIBA: A clustering tool for detecting protein complexes. BMC Bioinf. 10(Suppl 6), S11 (2009)CrossRefGoogle Scholar
  120. 120.
    Chua, H.N., Ning, K., Sung, W.K., Leong, H.W., Wong, L.: Using indirect protein–protein interactions for protein complex prediction. J. Bioinf. Comput. Biol. 6(3), 435–466 (2008)CrossRefGoogle Scholar
  121. 121.
    Li, X.L., Foo, C.S., Ng, S.K.: Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. Comput. Syst. Bioinf. Conf. 6, 157–168 (2007)Google Scholar
  122. 122.
    Lubovac, Z., Gamalielsson, J., Olsson, B.: Combining functional and topological properties to identify core modules in protein interaction networks. Proteins 64(4), 948–959 (2006)CrossRefGoogle Scholar
  123. 123.
    Cho, Y.R., Hwang, W., Ramanathan, M., Zhang, A.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinf. 8, 265 (2007)CrossRefGoogle Scholar
  124. 124.
    Maraziotis, I.A., Dimitrakopoulou, K., Bezerianos, A.: Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinf. 8, 408 (2007)CrossRefGoogle Scholar
  125. 125.
    Feng, J., Jiang, R., Jiang, T.: A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(3), 621–634 (2011)MathSciNetCrossRefGoogle Scholar
  126. 126.
    Ulitsky, I., Shamir, R.: Identification of functional modules using network topology and high-throughput data. BMC Syst. Biol. 1, 8 (2007)CrossRefGoogle Scholar
  127. 127.
    Li, X., Wu, M., Kwoh, C.K., Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction networks: A survey. BMC Genomics 11(Suppl 1), S3 (2010)CrossRefGoogle Scholar
  128. 128.
    Pavlopoulos, G.A., Wegener, A.L., Schneider, R.: A survey of visualization tools for biological network analysis. BioData Min. 1, 12 (2008)CrossRefGoogle Scholar
  129. 129.
    Gehlenborg, N., O’Donoghue, S.I., Baliga, N.S., Goesmann, A., Hibbs, M.A., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D., Gavin, A.C.: Visualization of omics data for systems biology. Nat. Methods 7(Suppl 3), S56–S68 (2010)CrossRefGoogle Scholar
  130. 130.
    Suderman, M., Hallett, M.: Tools for visually exploring biological networks. Bioinformatics 23(20), 2651–2659 (2007)CrossRefGoogle Scholar
  131. 131.
    Kohler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Ruegg, A., Rawlings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11), 1383–1390 (2006)CrossRefGoogle Scholar
  132. 132.
    Breitkreutz. BJ, Stark. C, M, T.: Pajek—program for large network analysis. Connections 21, 47–57 (1998)Google Scholar
  133. 133.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)CrossRefGoogle Scholar
  134. 134.
    Pavlopoulos, G.A., Hooper, S.D., Sifrim, A., Schneider, R., Aerts, J.: Medusa: A tool for exploring and clustering biological networks. BMC Res. Notes 4(1), 384 (2011)CrossRefGoogle Scholar
  135. 135.
    Hu, Z., Hung, J.H., Wang, Y., Chang, Y.C., Huang, C.L., Huyck, M., DeLisi, C.: VisANT 3.5: Multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37(Web Server issue), W115–W121 (2009)Google Scholar
  136. 136.
    Letunic, I., Yamada, T., Kanehisa, M., Bork, P.: iPath: Interactive exploration of biochemical pathways and networks. Trends Biochem. Sci. 33(3), 101–103 (2008)CrossRefGoogle Scholar
  137. 137.
    Dogrusoz, U., Erson, E.Z., Giral, E., Demir, E., Babur, O., Cetintas, A., Colak, R.: PATIKAweb: A web interface for analyzing biological pathways through advanced querying and visualization. Bioinformatics 22(3), 374–375 (2006)CrossRefGoogle Scholar
  138. 138.
    van Iersel, M.P., Kelder, T., Pico, A.R., Hanspers, K., Coort, S., Conklin, B.R., Evelo, C.: Presenting and exploring biological pathways with PathVisio. BMC Bioinf. 9, 399 (2008)CrossRefGoogle Scholar
  139. 139.
    Shamir, R., Maron-Katz, A., Tanay, A., Linhart, C., Steinfeld, I., Sharan, R., Shiloh, Y., Elkon, R.: EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinf. 6, 232 (2005)CrossRefGoogle Scholar
  140. 140.
    Seo, J., Gordish-Dressman, H., Hoffman, E.P.: An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22(7), 808–814 (2006)CrossRefGoogle Scholar
  141. 141.
    Kapushesky, M., Kemmeren, P., Culhane, A.C., Durinck, S., Ihmels, J., Korner, C., Kull, M., Torrente, A., Sarkans, U., Vilo, J., Brazma, A.: Expression Profiler: Next generation–an online platform for analysis of microarray data. Nucleic Acids Res. 32(Web Server issue), W465–W470 (2004)Google Scholar
  142. 142.
    Secrier, M., Pavlopoulos, G.A., Aerts, J., Schneider, R.: Arena3D: Visualizing time-driven phenotypic differences in biological systems. BMC Bioinf. 13(1), 45 (2012)CrossRefGoogle Scholar
  143. 143.
    Pavlopoulos, G.A., O’Donoghue, S.I., Satagopam, V.P., Soldatos, T.G., Pafilis, E., Schneider, R.: Arena3D: Visualization of biological networks in 3D. BMC Syst. Biol. 2, 104 (2008)CrossRefGoogle Scholar
  144. 144.
    Freeman, T.C., Goldovsky, L., Brosch, M., van Dongen, S., Maziere, P., Grocock, R.J., Freilich, S., Thornton, J., Enright, A.J.: Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput. Biol. 3(10), 2032–2042 (2007)MathSciNetCrossRefGoogle Scholar
  145. 145.
    Morris, J.H., Apeltsin, L., Newman, A.M., Baumbach, J., Wittkop, T., Su, G., Bader, G.D., Ferrin, T.E.: clusterMaker: A multi-algorithm clustering plugin for Cytoscape. BMC Bioinf. 12, 436 (2011)CrossRefGoogle Scholar
  146. 146.
    Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B., Superti-Furga, G.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)CrossRefGoogle Scholar
  147. 147.
    Junker, B.H., Koschutzki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinf. 7, 219 (2006)CrossRefGoogle Scholar
  148. 148.
    O’Donoghue, S.I., Gavin, A.C., Gehlenborg, N., Goodsell, D.S., Heriche, J.K., Nielsen, C.B., North, C., Olson, A.J., Procter, J.B., Shattuck, D.W., Walter, T., Wong, B.: Visualizing biological data-now and in the future. Nat. Methods 7(Suppl 3), S2–S4 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Georgios A. Pavlopoulos
    • 1
  • Ernesto Iacucci
    • 1
  • Ioannis Iliopoulos
    • 2
  • Pantelis Bagos
    • 3
  1. 1.ESAT-SCD/iMinds-KU.Leuven Future Health Department Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Division of Basic SciencesUniversity of Crete Medical SchoolHeraklionGreece
  3. 3.Department of Computer Science and Biomedical InformaticsUniversity of Central GreeceLamiaGreece

Personalised recommendations