Malliavin Calculus and Self Normalized Sums

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2078)

Abstract

We study the self-normalized sums of independent random variables from the perspective of the Malliavin calculus. We give the chaotic expansion for them and we prove a Berry–Esséen bound with respect to several distances.

Keywords

Chaos expansions Limit theorems Malliavin calculus Multiple stochastic integrals Self-normalized sums Stein’s method 

References

  1. 1.
    M. Abramowitz, I.A. Stegun (eds). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition (Dover, New York, 1992)Google Scholar
  2. 2.
    V. Bentkus, F. Götze, The Berry-Essén bound for Student’s statistics. Ann. Probab. 24, 491–503 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    V. Bentkus, F. Götze, A. Tikhomirov, Berry-Esseen bounds for statistics of weakly dependent samples. Bernoulli 3, 329–349 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    V. Bentkus, M. Bloznelis, F. Götze, A Berry-Esséen bound for Student’s statistics in the non i.i.d. case. J. Theor. Probab. 9, 765–796 (1996)Google Scholar
  5. 5.
    S. Bourguin, C.A. Tudor, Berry-Esséen bounds for long memory moving averages via Stein’s method and Malliavin calculus. Stoch. Anal. Appl. 29, 881–905 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J.-C. Breton, I. Nourdin, G. Peccati, Exact confidence intervals for the Hurst parameter of a fractional Brownian motion. Electron. J. Stat. 3, 415–425 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V.H. de la Pena, T.L. Lai, Q.M.Shao, Self Normalized Processes (Springer, New York, 2009)MATHGoogle Scholar
  8. 8.
    E. Giné, E. Götze, D. Mason, When is the t-Student statistics asymptotically standard normal? Ann. Probab. 25, 1514–1531 (1997)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P. Hall, Q. Wang, Exact convergence rate and leading term in central limit theorem for Student’s t statistic. Ann. Probab. 32(2), 1419–1437 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Y. Hu, D. Nualart, Some processes associated with fractional Bessel processes. J. Theor. Probab. 18(2), 377–397 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. Maller, On the law of the iterated logarithm in the infinite variance cas. J. Aust. Math. Soc. 30, 5–14 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. Nourdin, G. Peccati, Stein’s method meets Malliavin calculus: a short survey with new estimates. To appear in Recent Advances in Stochastic Dynamics and Stochastic Analysis (World Scientific, Singapore, 2010), pp. 207–236Google Scholar
  13. 13.
    I. Nourdin, G. Peccati, Stein’s method on Wiener chaos. Probab. Theor. Relat. Field. 145(1–2), 75–118 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    I. Nourdin, G. Peccati, Stein’s method and exact Berry-Esséen asymptotics for functionals of Gaussian fields. Ann. Probab. 37(6), 2200–2230 (2009)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    I. Nourdin, G. Peccati, A. Réveillac, Multivariate normal approximation using Steins method and Malliavin calculus. Ann. Inst. H. P. Probab. Stat. 46(1), 45–58 (2010)MATHCrossRefGoogle Scholar
  16. 16.
    D. Nualart, Malliavin Calculus and Related Topics, 2nd edn (Springer, New York, 2006)MATHGoogle Scholar
  17. 17.
    Q.M. Shao, An explicit Berry-Esseen bound for Student’s t-statistic via Stein’s method. Stein’s method and applications, pp. 143–155. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5 (Singapore University Press, Singapore, 2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculté des Sciences, de la Technologie et de la CommunicationUniversité du LuxembourgLuxembourg CityLuxembourg
  2. 2.Laboratoire Paul PainlevéUniversité de Lille 1Villeneuve d’Ascq, LilleFrance
  3. 3.Department of MathematicsAcademy of Economical StudiesBucharestRomania

Personalised recommendations