Advertisement

FE Simulations Based on Enhanced Elasto-Plasticity

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

The chapter deals with FE simulations of incipient granular silo flow within enhanced elasto-plasticity. The calculations were performed with a micropolar elasto-plastic constitutive model. The quasi-static, dynamic and rapid flow was studied. A shear zone formation was taken into account in analyses.

Keywords

Wall Stress Couple Stress Smooth Wall Loose Sand Double Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abaqus. User’s manual, version 6.4, Hibbitt, Karlsson & Sorensen, Inc. (2004)Google Scholar
  2. 2.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc., New Jersey (1982)Google Scholar
  3. 3.
    Buggisch, H., Renner, M.: Theoretische und experimentelle Untersuchungen zum schnellen. Fließen von Schüttgütern in konvergenten Geometrien, SFB ,,Silos”, pp. 65–86. Karlsruhe University (1993)Google Scholar
  4. 4.
    Buggisch, H.: Theoretische und experimentelle Untersuchungen zum schnellem Fließen von Schüttgütern in konvergenten Geometrien, Deutsche Forschungs-gemeinschaft “Silobauwerke und ihre spezifischen Beanspruchungen”, pp. 137–148. Wiley-Vch (2000)Google Scholar
  5. 5.
    Das, M.B.: Fundamentals of Soil Dynamics. Elsevier, New York (1983)zbMATHGoogle Scholar
  6. 6.
    Enstad, G.G.: Investigation of the use of insert in order to obtain Mass Flow in Silos. POSTEC-Newsletter No. 15, 13–16 (1996)Google Scholar
  7. 7.
    Enstad, G.G.: Further investigation of the use of insert in order to obtain mass flow in silos. POSTEC-Newsleter No. 16, 15–18 (1997)Google Scholar
  8. 8.
    Enstad, G.G.: Use of inverted cones and double cones as inserts for obtaining mass flow. POSTEC-Newsleter No. 17, 15–16 (1998)Google Scholar
  9. 9.
    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. VDI Zeitschrift 39, 1045–1049 (1895)Google Scholar
  10. 10.
    Mühlhaus, H.-B.: Continuum models for layered and blocky rock. In: Hudson, J.A., Fairhurst, C. (eds.) Comprehensive Rock Engineering, vol. 2, pp. 209–231. Pergamon Press (1990)Google Scholar
  11. 11.
    Renner, M.: Über die Stabilität der stationären Strömung von Schüttgütern in vertikalen Schächten. PhD Thesis, Faculty of Chemistry, Karlsruhe University, 1–166 (1996)Google Scholar
  12. 12.
    Schwedes, J.: Fließverhalten von Schüttgütern in Bunkern. Weinheim (1968)Google Scholar
  13. 13.
    Silo Code DIN 1055, Teil 6, Lastanahmen für Bauten (1987)Google Scholar
  14. 14.
    Silo Code PN-B-03202: Silos for bulk solids (1996) (in polish) Google Scholar
  15. 15.
    Sluys, L.J.: Wave propagation, localisation and dispersion in softening. PhD Thesis, Delft University, 1–163 (1992)Google Scholar
  16. 16.
    Strusch, J.: Wandnormalspannungen in einem Silo mit Einbau und Kräfte auf Einbauten. PhD Thesis, Technische Universität Braunschweig, Germany (1996)Google Scholar
  17. 17.
    Tejchman, J.: Scherzonenbildung und Verspannugseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröffentlichung des Instituts für Boden- und Felsmechanik der Universität Karlsruhe 117, 1–236 (1989)Google Scholar
  18. 18.
    Tejchman, J., Gudehus, G.: Silo-music and silo-quake, experiments and a numerical Cosserat approach. Powder Technology 76(2), 201–212 (1993)CrossRefGoogle Scholar
  19. 19.
    Tejchman, J.: Shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, vol. 140, pp. 1–353. Karlsruhe University (1997)Google Scholar
  20. 20.
    Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)CrossRefGoogle Scholar
  21. 21.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micropolar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer (2008)Google Scholar
  22. 22.
    Tüzün, U., Neddermann, R.M.: Flow of granular materials round obstacles. Bulk Solids Handling 3, 507–517 (1983)Google Scholar
  23. 23.
    Wójcik, M., Tejchman, J.: Numerical simulations of granular material flow in silos with and without insert. Archives of Civil Engineering LIII(2), 293–322 (2007)Google Scholar
  24. 24.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations