Skip to main content

Model Silo Tests

  • Chapter
  • 1226 Accesses

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The experimental results from model silo tests are summarized. Quasistatic flow and dynamic flow of granular material was investigated in laboratory tests. In addition, the results of deformation measurements in dry cohesionless sand during free flow in model silos are described using 3 different non-invasive methods: particle image velocimetry, electrical capacitance tomography and x-ray tomography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.J.: Particle imaging technique for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  2. Abellon, R.D., Kolar, Z.I., den Hollander, W., de Goeij, J.J.M., Schouten, J.C., van den Bleek, C.M.: A single radiotracer particle method for the determination of solids circulation rate in interconnected fluidized beds. Powder Technology 92, 53–60 (1997)

    Article  Google Scholar 

  3. Alshibli, K.A., Sture, S., Costes, N.C., Frank, M.L., Lankton, M.R., Batiste, S.N.: Swanson: Assessment of local deformation in sand using X-ray computed tomography. Geotech. Test. J. 23(3), 274–299 (2000)

    Article  Google Scholar 

  4. Baxter, G.W., Behringer, R.P.: Pattern formation and time-dependence in flowing sand. In: Two Phase Flows and Waves, pp. 1–29. Springer, New York (1990)

    Google Scholar 

  5. Berthel, A., Bonin, T., Cadilhon, S., Chatellier, L., Kaftandjian, V., Honorat, P., Le Brun, A., Maglaive, J.-C., Moreau, P., Pettier, J.-L., Rebuffel, C., Roenelle, F., Roussilhe, L., Staat, S., Tahon, M., Thiery, T.J.: Digital Radiography: Description and User’s Guide. In: International Symposium on Digital Industrial Radiology and Computed Tomography, DIR 2007, Lyon, France, June 25-27 (2007)

    Google Scholar 

  6. Bhandari, A.R., Inoue, J.: Experimental study of strain rates effects on strain localization characteristics of soft rocks. Soils and Foundations 45(1), 125–140 (2005)

    Google Scholar 

  7. Bennett, M.A., Luke, S.P., Jia, X., West, R.M., Williams, R.A.: Analysis and flow regime identification of bubble column dynamics. In: Proceedings of 1st World Congress on Industrial Process Tomography, Buxton, England, pp. 54–61 (1999)

    Google Scholar 

  8. Blair-Fish, P., Bransby, P.: Flow pattern and wall stresses in a mass-flow bunker. J. Eng. Ind. Trans. ASME B 95(1), 17–26 (1973)

    Article  Google Scholar 

  9. Brzeski, P., Mirkowski, J., Olszewski, T., Pląskowski, A., Smolik, W., Szabatin, R.: Multichannel capacitance tomography for dynamic process imaging. Opto-Electronics Review 11(3), 175–179 (2003)

    Google Scholar 

  10. Buffière, J.-Y., Cloetens, P., Ludwig, P., Maire, E., Salvo, L.: In Situ X-Ray Tomography Studies of Microstructural Evolution Combined with 3D Modeling. MRS Bulletin 33 (2008)

    Google Scholar 

  11. Buick, J.M., Pankaj, P., Chavez-Sagarnaga, J., Pearce, A., Houghton, G.: Motion of granular particles on the wall of a model silo and the associated wall vibrations. Journal of Applied Physics 37, 2751–2760 (2004)

    Google Scholar 

  12. Busignies, V., Leclerc, B., Porion, P., Evesque, P., Couarraze, G., Tchoreloff, P.: Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography. European Journal of Pharmaceutics and Biopharmaceutics 64, 38–50 (2006)

    Article  Google Scholar 

  13. Butterfield, R., Harkness, R.M., Andrews, K.Z.: A stereo-photogrammetric technique for measuring displacement fields. Geotechnique 20(3), 308–314 (1970)

    Article  Google Scholar 

  14. Chaniecki, Z., Dyakowski, T., Niedostatkiewicz, M., Sankowski, D.: Application of Electrical Capacitance Tomography for bulk solids flow analysis in silos. Particle & Particle Systems Characterization 23(3-4) (2006)

    Google Scholar 

  15. Chou, C.S., Hsu, J.Y., Lau, Y.D.: The granular flow in a two-dimensional flat-bottomed hopper with eccentric discharge. Physica A 308, 46–58 (2002)

    Article  Google Scholar 

  16. Colletta, B., Letouzey, J., Pinedo, R., Ballard, J.F., Balé, P.: Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology 19(11), 1063–1067 (1991)

    Article  Google Scholar 

  17. DaVis PIV Manual. La Vision (2002)

    Google Scholar 

  18. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  19. Desrues, J., Viggiani, G.: Strain localization in sand: overview of the experiments in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods in Geomech. 28(4), 279–324 (2004)

    Article  Google Scholar 

  20. Drescher A.: Methods for calculations of pressures and flow of granular materials in silo. Warszawa – Poznań (1983) (in Polish)

    Google Scholar 

  21. Dyakowski, T., Jeanmeure, L.F.C., Jaworski, A.J.: Applications of electrical tomography for gas-solids and liquid-solids flows-a review. Powder Technology 112, 174–192 (2000)

    Article  Google Scholar 

  22. Eckart, W., Nicholas, J.M., Gray, T., Hutter, K.: PIV for granular avalanches on inclined planes. In: Hutter, K., Kirchner, N. (eds.) Dynamical Response of Granular and Powder Materials in Large and Catastrophic Deformations. LNACM, vol. 11, pp. 195–219. Springer (2003)

    Google Scholar 

  23. Enstad, G.: On the theory of arching in mass flow hopper. Chem. Engng. Sci. 30 (1975)

    Google Scholar 

  24. Fan, X., Parker, D.J., Smith, M.D.: Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques. Nucl. Instrum. Methods Phys. Res. A 562, 345–350 (2006)

    Article  Google Scholar 

  25. Feser, M., Gelb, J., Chang, H., Cui, H., Duewer, F., Lau, S.H., Tkachuk, A., Yun, W.: Sub-micron resolution CT for failure analysis and process development. Measurement Science and Technology 19 (2008)

    Google Scholar 

  26. Fischer, R., Gondret, P., Rabaud, M., Courrech du Pont, S., Perrin, B.: Velocity fields of intermittent granular avalanches. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Proc. Int. Conf. Powders and Grains 2005, pp. 803–805. Taylor and Francis Group, London (2005)

    Google Scholar 

  27. Fischer, F., Hoppe, D., Schleicher, E., Mattausch, G., Flaske, H., Bartel, R., Hampel, U.: An ultra fast electron beam X-ray tomography scanner. Meas. Sci. Technol. 19, 45–57 (2008)

    Google Scholar 

  28. Forsberg, F., Siviour, C.R.: 3D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation. Meas. Sci. Techno. 20(9), 095703 (2009)

    Article  Google Scholar 

  29. Grudzień, K., Romanowski, A., Williams, R.A.: Application of a Bayesian approach to the tomographic analysis of hopper flow. Particle & Particle Systems Characterization 22(4), 246–253 (2005)

    Article  Google Scholar 

  30. Grudzień, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E.: Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing: Process Intensification 50, 59–67 (2011)

    Article  Google Scholar 

  31. Gudehus, G., Tejchman, J.: Some mechanisms of a granular mass in a silo – model tests and a numerical Cosserat approach. In: Brueller, O., Mannel, V., Najar, J. (eds.) Advances in Continuum Mechanics, pp. 178–193. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  32. Gudehus, G.: Einige Beiträge der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuitäten. Felsbau 4, 190–195 (1986)

    Google Scholar 

  33. Hall, S.A., Wood, D.M., Ibraim, E., Viggiani, G.: Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granular Matter 12(1) (2010)

    Google Scholar 

  34. Hammar, L., Wirdelius, H.: Radiographic sensitivity improved by optimized high resolution X-ray detector design. In: International Symposium on Digital Industrial Radiology and Computed Tomography, DIR 2007, Lyon, France, June 25-27 (2007)

    Google Scholar 

  35. Handley, M.F., Perry, M.G.: Stresses in granular materials flowing in converging hopper sections. Powder Technology 1(5), 245–251 (1968)

    Article  Google Scholar 

  36. Harris, W.W., Viggiani, G., Mooney, M.A., Finno, R.J.: Use of stereo-photogrammetry to analyze the development of shear bands in sand. Geotechnical Testing Journal 18(4), 405–420 (1995)

    Article  Google Scholar 

  37. Isaksen, Ø.: A review of reconstruction techniques for capacitance tomography. Measurement Science and Technology 7, 325–337 (1996)

    Article  Google Scholar 

  38. James, R.: Stress and strain fields in sand. PhD Thesis, University of Cambridge (1965)

    Google Scholar 

  39. Janssen, H.A.: Versuche über Getreidedruck in Silozellen. VDI Zeitschrift 39, 1045–1049 (1895)

    Google Scholar 

  40. Jaworski, A., Dyakowski, T.: Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Measurement Science and Technology 12, 1109–1119 (2001)

    Article  Google Scholar 

  41. Jeanmeure, L.F.C., Dyakowski, T., Zimmerman, W.B.J., Baker, G.: Use of Raw Capacitance Tomography Data for Flow Pattern Control. In: Proceedings of 2nd World Congress on Industrial Process Tomography, Hannover, Germany, pp. 12–19 (2001)

    Google Scholar 

  42. Jeanmure, L.F.C., Dyakowski, T., Zimmerman, W.B.J., Clark, W.: Direct flow-pattern identification using electrical capacitance tomography. Experimental Thermal and Fluid Science 26, 763–773 (2002)

    Article  Google Scholar 

  43. Jenneson, M., Luggar, R.D., Morton, E.J., Gundogdu, O., Tüzün, U.: Examining nanoparticle assemblies using high spatial resolution X-ray microtomography. J. Appl. Phys. 96, 2889–2895 (2004)

    Article  Google Scholar 

  44. Kaestner, A., Lehmann, E., Stampanoni, M.: Imaging and image processing in porous media research. Advances in Water Resources 31, 1174–1187 (2008)

    Article  Google Scholar 

  45. Kohse, W.C.: Experimentell Untersuchung von Scherfugenmustern in Granulaten. Diplomarbeit, Institute for Soil and Rock Mechanics, University of Karlsruhe, pp. 1–42 (2002)

    Google Scholar 

  46. Kozicki, J., Tejchman, J.: Experimental investigations of strain localization in concrete using Digital Image Correlation (DIC) technique. Archives of Hydro-Engineering and Environmental Mechanics 54(1), 3–24 (2007)

    Google Scholar 

  47. Leadbeater, T.W.: The development of positron imaging systems for applications in industrial process tomography. PhD Thesis, University of Birmingham, pp. 1–180 (2009)

    Google Scholar 

  48. Lenoir, N., Bornert, M., Desrues, J., Besuelle, P., Viggiani, C.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43, 193–205 (2007)

    Article  Google Scholar 

  49. Lionheart, W.R.B.: Developments in EIT reconstruction algorithms: pitfalls, challenges and recent development. Physiol. Meas. 25, 125–142 (2004)

    Article  Google Scholar 

  50. Liu, S., Yang, W.Q., Wang, H., Jiang, F., Su, Y.: Investigation of square fluidized beds using capacitance tomography: preliminary results. Measurement Science and Technology 12, 1120–1125 (2001)

    Article  Google Scholar 

  51. Lueptov, R.M., Akonur, A., Shinbrot, T.: PIV for granular flows. Experiments in Fluids 28, 183–186 (2000)

    Article  Google Scholar 

  52. Maia, N.M.M., Silva, J.M.M.: Theoretical and experimental modal analysis. Research Studies Press Ltd., England (1997)

    Google Scholar 

  53. Mallat, S.: A wavelet tour of signal processing. Academic Press (1998)

    Google Scholar 

  54. Marasdeh, Q., Wersito, W., Fan, L.-S., Teixeira, F.: Dual imaging modality of granular flow based on ECT sensors. Granular Matter 10, 75–80 (2008)

    Article  Google Scholar 

  55. McCabe, R.P.: Flow patterns in granular materials in circular silos. Geotechnique 1, 45–62 (1974)

    Google Scholar 

  56. McConnell, K.G.: Vibration Testing: Theory and Practice. John Wiley & Sons, Inc., New York (1995)

    MATH  Google Scholar 

  57. Medina, A., Cordova, J.A., Luna, E., Trevino, C.: Velocity field measurements in granular gravity flow in a near 2D silo. Physics Letters A 250(1-3), 111–116 (1998)

    Article  Google Scholar 

  58. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)

    Article  Google Scholar 

  59. Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)

    Article  Google Scholar 

  60. Michalowski, R.L., Shi, L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Journal of Geotechnical and Geoenvironmental Engineering 129(6), 439–449 (2003)

    Article  Google Scholar 

  61. Mokni, M.: Relations entre deformations en masse et deformations localisees dans les materiaux granulaires. PhD Thesis, University of Grenoble (1992)

    Google Scholar 

  62. Moreno-Atanasio, R., Williams, R.A., Jia, X.: Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8(2), 81–99 (2010)

    Article  Google Scholar 

  63. Niedostatkiewicz, M.: Dynamic effects in silos. PhD Thesis, Gdansk University of Technology, 1–258 (2002)

    Google Scholar 

  64. Niedostatkiewicz, M., Tejchman, J.: Experimental and theoretical studies on resonance dynamic effects during silo flow. Powder Handling and Processing 15(1), 36–42 (2003)

    Google Scholar 

  65. Niedostatkiewicz, M., Tejchman, J.: Measurements of changes of the bulk solid density during granular flow in silos. Powder Handling & Processing 17(2), 76–83 (2005)

    Google Scholar 

  66. Niedostatkiewicz, M., Tejchman, J.: Application of a Particle Image Velocimetry technique for deformation measurements of bulk solids during silo flow. Powder Handling & Processing 17(4), 216–220 (2005)

    Google Scholar 

  67. Niedostatkiewicz, M., Tejchman, J.: Investigations of porosity changes during granular silo flow using Electrical Capacitance Tomography (ECT) and Particle Image Velocimetry (PIV). Particle & Particle Systems Characterization 24(4-5), 304–312 (2007)

    Article  Google Scholar 

  68. Niedostatkiewicz, M., Tejchman, J.: Reduction of dynamic effects during granular flow in silos. Bulk Solids & Powder Science and Technology Journal 3(1) (2008)

    Google Scholar 

  69. Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z., Grudzień, K.: Determination of bulk solid concentration changes during granular flow in a silo with ECT sensors. Chemical Engineering Science 64, 20–30 (2009)

    Article  Google Scholar 

  70. Niedostatkiewicz, M., Grudzień, K., Chaniecki, Z., Tejchman, J.: Application of ECT to solid concentration measurements during granular flow in a rectangular model silo. Chemical Engineering Research and Design 88, 1037–1048 (2010)

    Article  Google Scholar 

  71. Niedostatkiewicz, M., Leśniewska, D., Tejchman, J.: Experimental analysis of shear zone patterns in sand for earth pressure problems using Particle Image Velocimetry. Strain 47(s2), 218–231 (2011)

    Article  Google Scholar 

  72. Niedostatkiwwicz, M., Wójcik, M., Tejchman, J.: Reduction of dynamic effects in silos in Austria. Internal Report of Gdańsk University of Technology (2012)

    Google Scholar 

  73. Nübel, K.: Publication Series of the Institute of Soil and Rock Mechanics, vol. 62. University of Karlsruhe (2002)

    Google Scholar 

  74. Oakley, J.P., Bair, M.S.: A mathematical model for the multi-electrode capacitance sensor. Measurement Science and Technology 6, 1617–1630 (1995)

    Article  Google Scholar 

  75. Ostendorf, M., Schwedes, J.: Application of Particle Image Velocimetry for velocity measurements during silo discharge. Powder Technology 158, 69–75 (2005)

    Article  Google Scholar 

  76. Parker, D.J., Forster, R.N., Fowles, P., Takhar, P.N.: Positron emission particle tracking using the new Birmingham positron camera. Nucl. Instrum. Methods Phys. Res. A 477, 540–545 (2002)

    Article  Google Scholar 

  77. Perry, M.G., Rothwell, E., Woodfin, W.T.: Model studies of mass flow bunkers II: Velocities distribution in the discharge of solids from mass flow bunkers. Powder Technology 14, 81–92 (1976)

    Article  Google Scholar 

  78. Pląskowski, A., Beck, M.S., Thorn, R., Dyakowski, T.: Imaging industrial flows applications of electrical process tomography, vol. 214. Institute of Physics Publishing, Bristol (1995)

    Google Scholar 

  79. Raffel, M., Willert, C., Kompenhaus, J.: Particle Image Velocimetry. Springer, Heidelberg (1998)

    Google Scholar 

  80. Rechenmacher, A.L., Finno, R.J.: Digital image correlation to evaluate shear banding in dilative sands. Geotechnical Testing Journal 27(1), 13–22 (2004)

    Article  Google Scholar 

  81. Rechenmacher, A.L.: Grain-scale processes governing shear band initiation and evolution in sands. J. of the Mechanics and Physics of Solids 54, 22–45 (2006)

    Article  MATH  Google Scholar 

  82. Remeysen, K., Swennen, R.: Beam hardening artifact reduction in micro-focus computed tomography for improved quantitative coal characterization. International Journal of Coal Geology 67, 101–111 (2006)

    Article  Google Scholar 

  83. Richard, P., Philippe, P., Barbe, F., Bourles, S., Thibault, X., Bideau, D.: Analysis by X-ray Microtomography of a granular packing undergoing compaction. Physical Review E 68, 020301 (2003)

    Article  Google Scholar 

  84. Reimbert, M., Reimbert, A.: Silos – Theory and Practice. Trans Tech Publishing, Clausthal (1976)

    Google Scholar 

  85. Roscoe, K.H., Arthur, J.R.F., James, R.G.: The determination of strains in soils by an X-ray method. Civ. Eng. Public Works Rev. 58, 873–876, 1009–1012 (1963)

    Google Scholar 

  86. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beam and plates. Journal of Sound and Vibration 297, 536–550 (2006)

    Article  Google Scholar 

  87. Safarian, S.S., Harris, E.C.: Design and construction of silos and bunkers. Van Nostrand Reinhold Co. (1985)

    Google Scholar 

  88. Schulze, D., Lyle, C., Schwedes, J.: Meβaufnehmer zur experimentellen Ermittlung von Spannungen im Grenzbereich Schüttgut-Wand. Report of SFB 219 Silos – Forschung und Praxis, pp. 333–344. Karlsruhe University (1988)

    Google Scholar 

  89. Scott, D.M., McCann, H.: Process imaging for automatic control. Taylor and Francis Group, p. 439 (2005)

    Google Scholar 

  90. Shi, B., Murakami, Y., Wu, Z., Chen, J., Inyang, H.: Monitoring of internal failure evolution in soils using computerization X-ray tomography. Engineering Geology 54(3-4) (1999)

    Google Scholar 

  91. Sideman, S., Hijikata, K.: Imaging in Transport Processes, p. 621. Begell House (1993)

    Google Scholar 

  92. Sikora, J.: Algorytmy numeryczne w tomografii impedancyjnej i wiroprądowej. Warszawa. Oficyna Wydawnicza Politechniki Warszawskiej II 212 (2000) (in Polish)

    Google Scholar 

  93. Silo Standard DIN 1055, Teil 6, Lastanahmen für Bauten (1987)

    Google Scholar 

  94. Sielamowicz, I., Kowalewski, T., Błoński, S.: Application of digital particle image velocimetry in registrations of central and eccentric granular material flows. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Proc. Int. Conf. Powder and Grains 2005, pp. 903–908 (2005)

    Google Scholar 

  95. Sielamowicz, I., Czech, M., Kowalewski, T.A.: Empirical description of flow parameters in eccentric flow inside a silo model. Powder Technology 198(3), 381–394 (2010)

    Article  Google Scholar 

  96. Skarżynski, L., Syroka, E., Tejchman, J.: Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strains (2009), doi:10.1111/j.1475-1305.2008.00605.x

    Google Scholar 

  97. Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Deformation measurements in granular bodies using a Particie Image Velocimetry technique. Archives of Hydro-and Environmental Engineering 53(1), 71–94 (2006)

    Google Scholar 

  98. Slominski, C., Niedostatkiewicz, M., Tejchman, J.: Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology 173(1), 1–18 (2007)

    Article  Google Scholar 

  99. Smith, S.W.: The scientist and engineer’s guide to digital signal processing. California Technical Publishing (1997)

    Google Scholar 

  100. Stock, S.R.: Recent advances in X-ray micro-tomography applied to material. International Materials Reviews 53(3), 129–181 (2008)

    Article  Google Scholar 

  101. Sutton, M.A., McNeill, S.R., Helm, J.D., Chao, Y.J.: Advances in two-dimensional and three-dimensional computer vision. Photemechanics, Topics in Applied Physics 77, 323–372 (2000)

    Article  Google Scholar 

  102. Tan, S., Fwa, T.: Influence of voids on density measurements of granular materials using gamma radiation techniques. Geotech. Test Journal 14(3), 257–265 (1991)

    Article  Google Scholar 

  103. Tejchman, J.: Dynamic phenomena in model silos. Int. Report of Institute for Rock and Soil Mechnics, Karlsruhe University (1987)

    Google Scholar 

  104. Tejchman, J.: Scherzonenbildung und Verspannugseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröffentlichung des Instituts für Boden- und Felsmechanik der Universität Karlsruhe 117, 1–236 (1989)

    Google Scholar 

  105. Tejchman, J.: Behaviour of a granular medium in a silo – model tests in a plane silo with parallel walls, part 1. Arch. of Civil Engng. 38(4), 375–394 (1992a)

    Google Scholar 

  106. Tejchman, J.: Behaviour of a granular medium in a silo – model tests in a plane silo with convergent walls, part 2. Arch. of Civil Engng. 38(4), 395–414 (1992b)

    Google Scholar 

  107. Tejchman, J., Gudehus, G.: Silo music and silo quake – experiments and a numerical Cosserat approach. Powder Technology 76, 201–212 (1993)

    Article  Google Scholar 

  108. Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. Int. Journal of Numerical and Anal. Methods in Geomechanics 19(8), 513–537 (1995)

    Article  Google Scholar 

  109. Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute of Soil Mechanics and Rock Mechanics, pp. 1–283. Karlsruhe University (1997)

    Google Scholar 

  110. Tejchman, J.: Silo-quake – measurements, a numerical polar approach and a way for its suppression. Thin-Walled Structures 31(1-3), 137–158 (1998)

    Article  Google Scholar 

  111. Tejchman, J.: Technical concept to prevent the silo honking. Powder Technology 106, 7–22 (1999)

    Article  Google Scholar 

  112. Tejchman, J., Gudehus, G.: Verspannung, Scherfugenbildung und Selbsterregung bei der Siloentleerung. In: Eibl, J., Gudehus, G. (eds.) Silobauwerke und ihre spezifischen Beanspruchungen, Deutsche Forschungsgemeinschaft. Wiley-VCH, pp. 245–284 (2000)

    Google Scholar 

  113. Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R. (eds.). Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)

    Google Scholar 

  114. Tüzün, U., Nedderman, R.M.: Gravity flow of granular materials round obstacles-I: Investigation of the effects of inserts on flow patterns inside a silo. Chemical Engineering Science 40(3), 325–336 (1985)

    Article  Google Scholar 

  115. Vacher, P., Dumoulin, S., Morestin, F., Mguil-Touchai, S.: Bidimensional strain measurement using digital images. Proc. Inst. Mech. Eng. 213, 811 C–817 C (1999)

    Google Scholar 

  116. Vardoulakis, I.: Scherfugenbildung in Sandkörpern als Verzweigungsproblem. PhD Thesis, Institute for Soil and Rock Mechanics, University of Karlsruhe, 70 (1977)

    Google Scholar 

  117. Vardoulakis, I., Graf, B., Gudehus, G.: Trap-door problem with dry sand: a statical approach based upon model test kinematics. Int. J. Numer. Anal. Meth. Geomech. 5, 57–78 (1981)

    Article  Google Scholar 

  118. Warsito, W., Fan, L.-S.: Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography. Chemical Engineering and Processing 42, 663–674 (2003)

    Article  Google Scholar 

  119. West, R.M., Jia, X., Williams, R.A.: Parametric modelling in industrial process tomography. Chemical Engineering Journal 77(1-2), 31–36 (2000)

    Article  Google Scholar 

  120. Westcott, W.: Bells and their music. G. P. Putnam, New York (1970)

    Google Scholar 

  121. White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7), 619–631 (2003)

    Article  Google Scholar 

  122. Wilde, K., Rucka, M., Tejchman, J.: Silo music – mechanism of dynamic flow and structure interaction. Powder Technology 186, 113–129 (2008)

    Article  Google Scholar 

  123. Wilde, K., Tejchman, J., Rucka, M., Niedostatkiewicz, M.: Experimental and theoretical investigations of silo music. Powder Technology 198(1), 38–48 (2010)

    Article  Google Scholar 

  124. Williams, R.A., Beck, M.S.: Process Tomography-principles, techniques and applications, vol. 507. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  125. Williams, R.A., Jia, X.: Tomographic imaging of particulate systems. Advanced Powder Technology 14(1), 1–16 (2003)

    Article  Google Scholar 

  126. Yang, W.Q.: Hardware design of electrical capacitance tomography systems. Measurement Science and Technology 7, 225–232 (1996)

    Article  Google Scholar 

  127. Yang, W.Q., Peng, L.: Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology 14, R1–R13 (2003)

    Google Scholar 

  128. Yoshida, T., Tatsuoka, F., Siddique, M.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 165–181. Balkema, Rotterdam (1994)

    Google Scholar 

  129. Zou, L., Zhang, Y., Yao, D., Peng, L., Zhang, B.: Using Principal Component Analysis to Measure Two-Phase Flow Concentration. In: Proceedings of 2nd World Congress on Industrial Process Tomography, Hanover, Germany, pp. 35–40 (2001)

    Google Scholar 

  130. Xie, C.G., Huang, S.M., Hoyle, B.S., Thorn, R., Lenn, C., Snowden, D., Beck, M.S.: Electrical capacitance tomography for flow imaging-system model for development of image reconstruction algorithms and design of primary sensors. IEE Proc. G 139, 89–98 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tejchman .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tejchman, J. (2013). Model Silo Tests. In: Confined Granular Flow in Silos. Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00318-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00318-4_5

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00317-7

  • Online ISBN: 978-3-319-00318-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics