Continuum Models to Bulks Solids

  • Jacek TejchmanEmail author
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


Two simple continuous constitutive models to describe the behaviour of granular bulk solids during flow are presented: a hypoplastic and an elasto-plastic constitutive model. A micro-polar and an integral-type non-local approach to properly model shear localization are introduced.


Granular Material Void Ratio Couple Stress Plane Strain Compression Initial Void Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abaqus. User’s manual, version 6.4. Hibbitt, Karlsson & Sorensen, Inc. (2004)Google Scholar
  2. 2.
    Akkermann, J.: Rotationsverhalten von StahlbetonRahmennecken. Dissertation at the University of Karlsruhe (2000)Google Scholar
  3. 3.
    Al Hattamleh, O., Muhunthan, B., Zbib, H.M.: Stress distribution in granular heaps using multi-slip formulation. Int. J. Numer. Analyt. Meth. Geomech. 29, 713–727 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Englewood Cliffs (1982)Google Scholar
  5. 5.
    Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13–26 (1996)CrossRefGoogle Scholar
  6. 6.
    Bauer, E.: Conditions of embedding Casagrande’s critical states into hypoplasticity. Mech. Cohes.-Frict. Mater. 5, 125–148 (2000)CrossRefGoogle Scholar
  7. 7.
    Bauer, E., Huang, W., Wu, W.: Investigations of shear banding in an anisotropic hypoplastic material. Int. J. Solids Structures 41, 5903–5919 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bazant, Z.: Micropolar medium as a model for buckling of grid frameworks. In: Developments in Mechanics. Proc. 12th Midwestern Mechanics Conference, pp. 587–593. University of Notre Dam (1971)Google Scholar
  9. 9.
    Bazant, Z.: Size effect in blunt fracture: concrete, rock, metal. J. Engng. Mechanics ASCE 110, 518–535 (1984)CrossRefGoogle Scholar
  10. 10.
    Bazant, Z., Lin, F., Pijaudier-Cabot, G.: Yield limit degradation: non-local continuum model with local strain. In: Owen, et al. (eds.) Proc. Int. Conf. Computational Plasticity, Barcelona, pp. 1757–1780 (1987)Google Scholar
  11. 11.
    Bazant, Z., Pijaudier-Cabot, G.: Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech. 55, 287–293 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bazant, Z., Pijaudier-Cabot, G.: Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. 115(4), 755–767 (1989)CrossRefGoogle Scholar
  13. 13.
    Bazant, Z., Lin, F.B.: Nonlocal yield limit degradation. Int. J. Num. Meth. Eng. 26, 1805–1823 (1988)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bazant, Z., Ozbolt, J.: Nonlocal microplane model for fracture, damage and size effect in structures. J. Engng. Mech. ASCE 116, 2485–2505 (1990)CrossRefGoogle Scholar
  15. 15.
    Bazant, Z., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Engng. Mech. 128(11), 1119–1149 (2002)CrossRefGoogle Scholar
  16. 16.
    Becker, M., Lippmann, H.: Plane plastic flow of granular model material. Arch. Mech. 29, 829–846 (1977)Google Scholar
  17. 17.
    Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)zbMATHGoogle Scholar
  18. 18.
    Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanics and Engineering 72, 305–350 (1989)zbMATHCrossRefGoogle Scholar
  19. 19.
    Bobiński, J., Tejchman, J.: Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete 4, 433–455 (2004)Google Scholar
  20. 20.
    Bogdanova-Bontscheva, N., Lippmann, H.: Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials. Acta Mech. 21, 93–113 (1975)CrossRefGoogle Scholar
  21. 21.
    Borja, R.I., Andrade, J.E.: Critical state plasticity. Part VI: Meso-scale finite element simulation of strain localization in discrete granular materials. Comp. Meths. Appl. Mech. Engng. 195, 5115–5140 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Engng. Comput. 8, 317–332 (1991)CrossRefGoogle Scholar
  23. 23.
    de Borst, R., Mühlhaus, H.-B., Pamin, J., Sluys, L.Y.: Computational modelling of localization of deformation. In: Owen, D.R.J., Onate, E., Hinton, E. (eds.) Proc. 3rd Int. Conf. Comp. Plasticity, pp. 483–508. Pineridge Press, Swansea (1992)Google Scholar
  24. 24.
    de Borst, R., Heeres, O.M.: A unified approach to the implicit integration of standard, non-standard and viscous plasticity models. Int. J. Num. Anal. Meth. Geomech. 26(11), 1059–1070 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Brinkgreve, R.: Geomaterial models and numerical analysis of softening. PhD Thesis, Delft University of Technology, pp. 1–153 (1994)Google Scholar
  26. 26.
    Chambon, R.: Une classe de lois de compartement incrementelement non lineaire pour les sols non visqueux, resolution de quelques problemes de coherences. C.R. Acad. Sci. 308, 1571–1576 (1989)zbMATHGoogle Scholar
  27. 27.
    Chambon, R.: Incremental behaviour of a simple deviatoric constitutive CLoE model. In: Mühlhaus, H.-B., et al. (eds.) Bifurcation and Localisation Theory in Geomechanics, pp. 21–28. Swets and Zeitlinger, Lisse (2001)Google Scholar
  28. 28.
    Chen, J., Yuan, H., Kalkhof, D.: A non-local damage model for elastoplastic materials based on gradient plasticity theory. Bericht Paul Scherrer Institut, 1–130 (2001)Google Scholar
  29. 29.
    Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. A. Hermann and Fils, Paris (1909)Google Scholar
  30. 30.
    Dafalias, Y.F.: Bounding surface plasticity: I. Mathematical foundation and hypoplasticity. J. Engrg. Mech. ASCE 112, 966–980 (1986)CrossRefGoogle Scholar
  31. 31.
    Darve, F., Flavigny, E., Rojas, E.: A class of incrementally non-linear constitutive relations and applications to clays. Comp. Geotech. 2, 43–66 (1986)CrossRefGoogle Scholar
  32. 32.
    Darve, F., Flavigny, E., Megachou, M.: Yield surfaces and principle of superposition revisited by incrementally non-linear constitutive relations. Int. J. Plasticity 11(8), 927–948 (1995)zbMATHCrossRefGoogle Scholar
  33. 33.
    Das, M.B.: Fundamentals of Soil Dynamics. Elsevier, New York (1983)zbMATHGoogle Scholar
  34. 34.
    Desrues, J., Chambon, R.: Shear band analysis for granular materials – the question of incremental linearity. Ing. Arch. 59, 187–196 (1989)CrossRefGoogle Scholar
  35. 35.
    Dietsche, A.: Lokale Effekte in linear-elastischen und elasto-plastischen Cosserat-Continua. Dissertation at the Karlsruhe University, 1–141 (1993)Google Scholar
  36. 36.
    Dietsche, A., Steinmann, P., Willam, K.: Micropolar elastoplasticity and its role in localization. Int. J. Plasticity 9(8), 813–831 (1993)zbMATHCrossRefGoogle Scholar
  37. 37.
    Donea, J., Huerta, A., Ponthot, J.-P., Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian Methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, pp. 1–25. John Wiley and Sons, Ltd. (2004)Google Scholar
  38. 38.
    Edelen, D.G.B., Green, A.E., Laws, N.: Non-local continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A.: From particle ensembles to Cosserat continua: homogenisation of contact forces towards stresses and couple stresses. Int. J. Solids Structures 40, 6681–6702 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)zbMATHCrossRefGoogle Scholar
  41. 41.
    Eringen, A.C.: On non-local plasticity. Int. J. Engineering Science 19, 1461–1474 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Geers, M., Peijs, T., Brekelmans, W., de Borst, R.: Experimental monitoring of strain localization and failure behaviour of composite materials. Compos. Sci. Technol. 56, 1283–1290 (1996)CrossRefGoogle Scholar
  43. 43.
    Groen, A.E.: Three-dimensional elasto-plastic analysis of soils. PhD Thesis, Delft University, 1–114 (1997)Google Scholar
  44. 44.
    Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found 36(1), 1–12 (1996)CrossRefGoogle Scholar
  45. 45.
    Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)CrossRefGoogle Scholar
  46. 46.
    Gudehus, G.: Seismo-hypoplasticity with a granular temperature. Granular Matter 8, 93–102 (2006)zbMATHCrossRefGoogle Scholar
  47. 47.
    Gudehus, G.: Physical Soil Mechanics. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  48. 48.
    Günther, W.: Zur Statik und Kinematik des Cosserat-Kontinuums. Abh. Braunschweigische Wiss. Gessellsch. 10, 195–213 (1958)zbMATHGoogle Scholar
  49. 49.
    Hayakawa, H., Nishimori, H., Sasa, S., Taguchi, Y.: Dynamics of granular matter. J. App. Phys. 34, 397–408 (1995)Google Scholar
  50. 50.
    Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohes.-Frict. Mater. 4(5), 461–486 (1999)CrossRefGoogle Scholar
  51. 51.
    Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction angles. Comp. Geotech. 31, 365–373 (2004)CrossRefGoogle Scholar
  52. 52.
    Huang, W., Nübel, K., Bauer, E.: A polar extension of hypoplastic model for granular material with shear localization. Mech. Mater. 34, 563–576 (2002)CrossRefGoogle Scholar
  53. 53.
    Huang, W., Bauer, E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. J. Num. Anal. Meth. Geomech. 27, 325–352 (2003)zbMATHCrossRefGoogle Scholar
  54. 54.
    Huetink, J.: On the simulations of thermo-mechanical forming processes. PhD Thesis, University of Twente (1986)Google Scholar
  55. 55.
    Hughes, T.J.R., Liu, W.K.: Implicit-explicit finite elements in transient analysis. Journal of Applied Mechanics 45, 371–375 (1978)zbMATHCrossRefGoogle Scholar
  56. 56.
    Iordache, M.M., Willam, K.J.: Localized failure analysis in elastoplastic Cosserat continua. Comp. Meth. Appl. Mech. Engrg. 151, 559–586 (1998)zbMATHCrossRefGoogle Scholar
  57. 57.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids and gases. Reviews of Modern Physics 68(4), 1259–1273 (1996)CrossRefGoogle Scholar
  58. 58.
    Jirasek, M., Zimmermann, T.: Rotating crack model with transition to scalar damage. LSC Internal Report 97/01. Swiss Federal Institute of Technology, Lausanne (1997)Google Scholar
  59. 59.
    Jirasek, M., Rolshoven, S.: Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Engineering Science 41, 1553–1602 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Jirasek, M., Rolshoven, S., Grassl, P.: Size effect on fracture energy induced by non-locality. Int. Journal Numerical and Analytical Methods in Geomechanics 28, 653–670 (2003)CrossRefGoogle Scholar
  61. 61.
    Jirasek, M.: Non-local damage mechanics with application to concrete. In: Vardoulakis, I., Mira, P. (eds.) Failure, Degradation and Instabilities in Geomaterials, pp. 683–709. Lavoisier (2004a)Google Scholar
  62. 62.
    Jirasek, M.: Size effect on fracture energy induced by non-locality. International Journal for Numerical and Analytical Methods in Geomechanics 28, 653–670 (2004b)zbMATHCrossRefGoogle Scholar
  63. 63.
    Kanatani, K.: A micropolar continuum theory for granular materials. Int. J. Engng. Sci. 17, 419–432 (1979)zbMATHCrossRefGoogle Scholar
  64. 64.
    Kessel, S.: Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums. Abh. Braunschweigische Wiss. Gess. 16, 1–22 (1964)zbMATHGoogle Scholar
  65. 65.
    Kolymbas, D.: A rate-dependent constitutive equation for soils. Mech. Res. Comm. 6, 367–372 (1977)CrossRefGoogle Scholar
  66. 66.
    Kolymbas, D.: Introduction to hypoplasticity. In: Advances in Geotechnical Engineering and Tunneling. Rotterdam, Brookfield, Balkema (2000)Google Scholar
  67. 67.
    Kröner, E., Datta, B.K.: Nichtlokale Elastostatik: Ableitung an der Gittertheorie. Z. Phys. 196, 203–211 (1966)CrossRefGoogle Scholar
  68. 68.
    Lade, P.V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solid Structures 13, 1019–1035 (1977)zbMATHCrossRefGoogle Scholar
  69. 69.
    Lanier, J., Caillerie, D., Chambon, R.: A general formulation of hypoplasticity. Int. J. Numer. Anal. Meth. Geomech. 28(15), 1461–1478 (2004)zbMATHCrossRefGoogle Scholar
  70. 70.
    Le Bellego, C., Dube, J.F., Pijaudier-Cabot, G., Gerard, B.: Calibration of nonlocal damage model from size effect tests. European Journal of Mechanics A/Solids 22, 33–46 (2003)zbMATHCrossRefGoogle Scholar
  71. 71.
    van Leer, B.: Towards the ultimate conservative difference scheme. A new approach to numerical convection. Journal of Computational Physics 23, 276–299 (1977)zbMATHCrossRefGoogle Scholar
  72. 72.
    Linder, C.: An arbitrary Lagrangian-Eulerian finite element formulation for dynamics and finite strain plasticity models. PhD Thesis, University of Stuttgart (2003)Google Scholar
  73. 73.
    Mahnken, T., Kuhl, E.: Parameter identification of gradient enhanced damage models. Eur. J. Mech. A/Solids 18, 819–835 (1999)zbMATHCrossRefGoogle Scholar
  74. 74.
    Maier, T.: Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. PhD Thesis, Dortmund University (2002)Google Scholar
  75. 75.
    Marcher, T., Vermeer, P.A.: Macromodelling of softening in non-cohesive soils. In: Vermeer, P.A., et al. (eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, pp. 89–110. Springer (2001)Google Scholar
  76. 76.
    Masin, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meths. Geomech. 29, 311–336 (2005)zbMATHCrossRefGoogle Scholar
  77. 77.
    Masin, D., Herle, I.: Improvement of a hypoplastic model to predict clay behaviour under undrained conditions. Acta Geotech. 2, 261–268 (2007)CrossRefGoogle Scholar
  78. 78.
    Mindlin, R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Mróz, Z.: Non-associated Flow Laws in Plasticity. J. de Mechanique 1, 21–42 (1963)Google Scholar
  80. 80.
    Murakami, A., Yoshida, N.: Cosserat continuum and finite element analysis. In: Asaoka, A., Adachi, T., Oka, F. (eds.) Deformation and Progressive Failure in Geomechanics, pp. 871–876. Pergamon (1997)Google Scholar
  81. 81.
    Mühlhaus, H.-B.: Berücksichtigung von Inhomogenitäten im Gebirge im Rahmen einer Kontinuumstheorie. Veröffentlichung des Instituts für Boden- und Felsmechanik 106, 1–65 (1987)Google Scholar
  82. 82.
    Mühlhaus, H.-B.: Application of Cosserat theory in numerical solutions of limit load problems. Ing. Arch. 59, 124–137 (1989a)CrossRefGoogle Scholar
  83. 83.
    Mühlhaus, H.-B.: Stress and couple stress in a layered half plane with surface loading. Int. J. Numer. Anal. Met. Geomech. 13, 545–563 (1989b)Google Scholar
  84. 84.
    Mühlhaus, H.-B.: Continuum models for layered and blocky rock. In: Hudson, J.A., Fairhurst, C. (eds.) Comprehensive Rock Engineering, vol. 2, pp. 209–231. Pergamon Press (1990)Google Scholar
  85. 85.
    Neuber, H.: Über Probleme der Spannungskonzentration im Cosseratkörper. Acta Mech. 2, 48–69 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohes.-Frict. Mater. 2, 279–299 (1997)CrossRefGoogle Scholar
  87. 87.
    Niemunis, A.: Extended hypoplastic models for soils. Monograph No. 34, Gdansk University of Technology (2003)Google Scholar
  88. 88.
    Nübel, K.: Experimental and numerical investigation of shear localisation in granular materials. Publication Series of the Institute of Soil and Rock Mechanics, vol. 62. University Karlsruhe (2002)Google Scholar
  89. 89.
    Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials, effects of particle rolling. Mech. Mater. 1, 269–283 (1982)CrossRefGoogle Scholar
  90. 90.
    Oda, M.: Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (ed.) Powders and Grains, pp. 161–167. Balkema, Rotterdam (1993)Google Scholar
  91. 91.
    Ortiz, M., Simo, I.C.: An analysis of a new class of integration algorithms for elastoplastic constitutive relation. Int. J. Numer. Methods in Engrg. 23, 353–366 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Ozbolt, J.: Maβstabseffekt und Duktulität von Beton- und Stahlbetonkonstruktionen, Habilitation, Universität Stuttgart (1995)Google Scholar
  93. 93.
    Papanastasiou, P., Vardoulakis, I.: Numerical treatment of progressive localization in relation to borehole stability. Int. J. Num. Anal. Meth. Geomech. 16, 389–424 (1992)CrossRefGoogle Scholar
  94. 94.
    Pasternak, E., Mühlhaus, H.-B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds.) Computational Mechanics – New Frontiers for New Millennium, pp. 1189–1194. Elsevier Science (2001)Google Scholar
  95. 95.
    Pestana, J.M., Whittle, A.J.: Formulation of a unified constitutive model for clays and sands. Int. J. Num. Anal. Meth. Geomech. 23, 1215–1243 (1999)zbMATHCrossRefGoogle Scholar
  96. 96.
    Pijaudier-Cabot, G., Bazant, Z.P.: Nonlocal damage theory. ASCE J. Eng. Mech. 113, 1512–1533 (1987)CrossRefGoogle Scholar
  97. 97.
    Pijaudier-Cabot, G.: Non local damage. In: Mühlhaus, H.B. (ed.) Continuum Models for Materials with Microstructure. John Wiley & Sons Ltd. (1995)Google Scholar
  98. 98.
    Polizzotto, C., Borino, G., Fuschi, P.: A thermodynamic consistent formulation of nonlocal and gradient plasticity. Mech. Res. Commun. 25, 75–82 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Polizzotto, C.: Remarks on some aspects of non-local theories in solid mechanics. In: Proc. 6th National Congr. SIMAI. CD-ROM, Chia Laguna (2002)Google Scholar
  100. 100.
    di Prisco, C., Imposimato, S., Aifantis, E.C.: A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches. Int. J. Num. And Anal. Meth. Geomech. 26, 121–138 (2002)zbMATHCrossRefGoogle Scholar
  101. 101.
    Rondon, H.A., Wichtmann, T., Triantafyllidis, T., Lizcano, A.: Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements. Acta Geotechnica 2, 113–126 (2007)CrossRefGoogle Scholar
  102. 102.
    Schanz, T.: A constitutive model for cemented sands. In: Adachi, T., Oka, F., Yashima, A. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 165–172. Balkema, Rotterdam (1998)Google Scholar
  103. 103.
    Schäfer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. In: Festschrift Tolmien, W. (ed.) Miszellaneen der Angewandten Mechanik, pp. 277–292. Akademie-Verlag, Berlin (1962)Google Scholar
  104. 104.
    Schäfer, H.: Das Cosserat-Kontinuum. Zeitschrift für Angewandte Mathematik und Mechanik 8, 485–498 (1967)Google Scholar
  105. 105.
    Skarżynski, L., Syroka, E., Tejchman, J.: Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strains (2008), doi:10.1111/j.1475-1305.2008.00605.xGoogle Scholar
  106. 106.
    Sluys, L.J.: Wave propagation, localisation and dispersion in softening solids. PhD Thesis, Delft University of Technology (1992)Google Scholar
  107. 107.
    Steinmann, P.: Theory and numerics of ductile micropolar elastoplastic damage. Int. J. Num. Meth. in Engng. 38, 583–606 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Stoker, C.: Developments of the Arbitrary Lagrangian-Eulerian Method in Non-linear Solid Mechanics. PhD Thesis, University of Twente (1999)Google Scholar
  109. 109.
    Tamagnini, C., Viggiani, C., Chambon, R.: A review of two different approaches to hypoplasticity. In: Kolymbas, D. (ed.) Constitutive Modeling of Granular Materials, ed, pp. 107–145. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  110. 110.
    Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Publication Series of the Institute of Soil and Rock Mechanics, vol. 117, pp. 1–236. University Karlsruhe (1989)Google Scholar
  111. 111.
    Tejchman, J., Wu, W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)zbMATHCrossRefGoogle Scholar
  112. 112.
    Gudehus, G., Tejchman, J.: Silo music and silo quake - experiments and a numerical Cosserat approach. Powder Technology 76, 201–212 (1993)CrossRefGoogle Scholar
  113. 113.
    Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. Int. J. Num. Anal. Meth. Geomech. 19(8), 513–537 (1995)CrossRefGoogle Scholar
  114. 114.
    Tejchman, J., Wu, W.: Dynamic patterning of shear bands in a Cosserat continuum. Int. Engineer. Mech. Journal ASCE 123(2), 123–134 (1997)CrossRefGoogle Scholar
  115. 115.
    Tejchman, J., Bauer, E.: Numerical simulation of shear band formation with a polar hypoplastic model. Comp. Geotech. 19(3), 221–244 (1996)CrossRefGoogle Scholar
  116. 116.
    Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. Publication Series of the Institute of Soil and Rock Mechanics, vol. 140, pp. 1–353. University Karlsruhe (1997)Google Scholar
  117. 117.
    Tejchman, J., Herle, I., Wehr, J.: FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localisation. Int. J. Num. Anal. Meth. Geomech. 23, 2045–2074 (1999)zbMATHCrossRefGoogle Scholar
  118. 118.
    Tejchman, J., Gudehus, G.: Shearing of a narrow granular strip with polar quantities. Int. J. Num. Anal. Meth. Geomech. 25, 1–28 (2001)zbMATHCrossRefGoogle Scholar
  119. 119.
    Tejchman, J.: Patterns of shear zones in granular materials within a polar hypoplastic continuum. Acta Mech. 155(1-2), 71–95 (2002)zbMATHCrossRefGoogle Scholar
  120. 120.
    Tejchman, J.: A non-local hypoplastic constitutive law to describe shear localisation in granular bodies. Archives of Hydro-Engineering and Environmental Mechanics 50(4), 229–250 (2003)Google Scholar
  121. 121.
    Tejchman, J.: Influence of a characteristic length on shear zone thickness in hypoplasticity with different enhancements. Computers and Geotechnics 31(8), 595–611 (2004)CrossRefGoogle Scholar
  122. 122.
    Tejchman, J., Niemunis, A.: FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter 8(3-4), 205–221 (2006)zbMATHCrossRefGoogle Scholar
  123. 123.
    Tejchman, J., Bauer, E., Wu, W.: Effect of texturial anisotropy on shear localization in sand during plane strain compression. Acta Mech. 1-4: 23–51 (2007)Google Scholar
  124. 124.
    Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with micro-polar hypoplasticity. International Journal of Non-Linear Mechanics 42, 882–894 (2007)CrossRefGoogle Scholar
  125. 125.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds.). Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)Google Scholar
  126. 126.
    Tejchman, J., Górski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Structures 45(6), 1546–1569 (2008)zbMATHCrossRefGoogle Scholar
  127. 127.
    Tejchman, J., Wu, W.: FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant granular bodies within micro-polar hypoplasticity. Int. Journal for Numerical and Analytical Methods in Geomechanics 33(1), 117–142 (2009a)CrossRefGoogle Scholar
  128. 128.
    Tejchman, J., Wu, W.: FE-investigations of shear localization in granular bodies under high shear rate. Granular Matter 11(2), 115–128 (2009b)zbMATHCrossRefGoogle Scholar
  129. 129.
    Tejchman, J., Górski, J.: FE study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotechnica 5(2), 95–112 (2010)CrossRefGoogle Scholar
  130. 130.
    Tejchman, J., Wu, W.: FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granular Matter 12(4), 399–410 (2010a)CrossRefGoogle Scholar
  131. 131.
    Tejchman, J., Wu, W.: Boundary effects on behaviour of granular material during plane strain compression. European Journal of Mechanics / A Solids 29, 18–27 (2010b)CrossRefGoogle Scholar
  132. 132.
    Tejchman, J., Górski, J., Einav, I.: Effect of grain crushing on shear localization in granular bodies during plane strain compression. Int. J. Num. Anal. Meths. Geomech. 36(18), 1909–1931 (2011), doi:10.1002/nag.1079CrossRefGoogle Scholar
  133. 133.
    Uesugi, M.: Friction between dry sand and construction. PhD Thesis, Tokyo Institute of Technology (1987)Google Scholar
  134. 134.
    Uesugi, M., Kishida, H., Tsubakihara, Y.: Behaviour of sand particles in sand-steel friction. Soils Found. 28(1), 107–118 (1988)CrossRefGoogle Scholar
  135. 135.
    Unterreiner, P., Vardoulakis, I., Boulon, M., Sulem, J.: Essential features of a Cosserat continuum in interfacial localisation. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 141–155. Balkema, Rotterdam (1994)Google Scholar
  136. 136.
    Wang, C.C.: A new representation theorem for isotropic functions. J. Rat. Mech. Anal. 36, 166–223 (1970)zbMATHCrossRefGoogle Scholar
  137. 137.
    Wehr, J.: Granulatumhüllte Anker und Nägel. Publication Series of the Institute of Soil and Rock Mechanics, vol. 144. Karlsruhe University (1999)Google Scholar
  138. 138.
    Weifner, T., Kolymbas, D.: A hypoplastic model for clay and sand. Acta Geotech. 2, 103–112 (2007)CrossRefGoogle Scholar
  139. 139.
    Wójcik, M.: Experimental and theoretical investigations of flow pattern and wall pressures in silos with and without inserts. PhD Thesis, Gdańsk University of Technology (2009)Google Scholar
  140. 140.
    Wójcik, M., Tejchman, J.: Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology 192(3), 298–310 (2009)CrossRefGoogle Scholar
  141. 141.
    von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes.-Frict. Mater. 1, 251–271 (1996)CrossRefGoogle Scholar
  142. 142.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publication Series of the Institute of Soil and Rock Mechanics, vol. 129. University Karlsruhe (1992)Google Scholar
  143. 143.
    Wu, W., Niemunis, A.: Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohes.-Frict. Mater. 1, 145–163 (1996)CrossRefGoogle Scholar
  144. 144.
    Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23, 45–69 (1996)CrossRefGoogle Scholar
  145. 145.
    Wu, W., Niemunis, A.: Beyond failure in granular materials. Int. J. Num. and Anal. Meths. in Geomech. 21(2), 153–174 (1997)zbMATHCrossRefGoogle Scholar
  146. 146.
    Wu, W., Kolymbas, D.: Hypoplasticity then and now. In: Kolymbas, D. (ed.) Constitutive Modeling of Granular Materials, pp. 57–105. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  147. 147.
    Vardoulakis, I.: Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Num. Anal. Met. Geomech. 4, 103–119 (1980)zbMATHCrossRefGoogle Scholar
  148. 148.
    Vermeer, P.A.: A five-constant model unifying well-established concepts. In: Gudehus, G., Darve, F., Vardoulakis, I. (eds.) Proc. Int. Workshop on Constitutive Relations for Soils, pp. 175–197. Balkema (1982)Google Scholar
  149. 149.
    Vermeer, P.A., van Langen, H.: Soil collapse computations with finite elements. Ing. Arch. 59, 221–236 (1989)CrossRefGoogle Scholar
  150. 150.
    Zaimi, S.A.: Modelisation de l’coulement des charges dans le haut fourneau. PhD Thesis, Ecole Centrale Paris, France (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations