Dye-Sensitised Solar Cell Based on a Three-Dimensional Photonic Crystal

  • Stefan Guldin
Part of the Springer Theses book series (Springer Theses)


The integration of optical elements that increase the photon path length in the light absorbing layer is a promising strategy to increase device efficiency of dye-sensitised solar cells (DSC). Device architectures that incorporate structural order in form of a three-dimensional photonic crystal can lead to the localization of light in specific parts of the spectrum, while retaining the cell’s transparency in others. In this chapter, a first successful route is presented that allowed the experimental realisation of a double layer electrode architecture, including a mesoporous TiO2 underlayer and a macroporous TiO2 inverse opal top layer. This construct enables effective dye sensitisation, electrolyte infiltration, and charge collection from both layers, opening up additional parameter space for effective light management by harvesting photonic crystal-induced resonances.


Photonic Crystal Photonic Crystal Layer Titanium Ethoxide Double Layer Device Photonic Crystal Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. S. Guldin, S. Hüttner, M. Kolle, M. Welland, P. Müller-Buschbaum, R. Friend, U. Steiner, N. Tetreault, Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 10(7), 2303–2309 (2010)Google Scholar
  2. S. Guldin, P. Docampo, S. Hüttner, P. Kohn, M. Stefik, H.J. Snaith, U. Wiesner, U. Steiner, Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells, in Proceedings of the SPIE, vol. 8111 (2011). doi: 10.1117/12.893798
  3. B. O‘Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO\(_2\) films. Nature 353(6346), 737–740 (1991)Google Scholar
  4. J. Kroon, N. Bakker, H. Smit, P. Liska, K. Thampi, P. Wang, S. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovoltaics 15(1), 1–18 (2007)Google Scholar
  5. Z. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO\(_2\) photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004)CrossRefGoogle Scholar
  6. J.-H. Yum, E. Baranoff, S. Wenger, M. Nazeeruddin, M. Grätzel, Panchromatic engineering for dye-sensitized solar cells. Energ. Environ. Sci. 4(3), 842–857 (2011)CrossRefGoogle Scholar
  7. J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energ. Mater. Solar Cells 54(1–4), 265–275 (1998)CrossRefGoogle Scholar
  8. S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energ. Mater. Solar Cells 90(9), 1176–1188 (2006)CrossRefGoogle Scholar
  9. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 45(24–28), L638–L640 (2006)Google Scholar
  10. M. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. De Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, M. Grätzel, A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J. Photochem. Photobiol. A Chem. 185(2–3), 331–337 (2007)CrossRefGoogle Scholar
  11. S. Nishimura, N. Abrams, B. Lewis, L. Halaoui, T. Mallouk, K. Benkstein, J. van de Lagemaat, A. Frank, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125(3), 6306–6310 (2003)Google Scholar
  12. L. Halaoui, N. Abrams, T. Mallouk, Increasing the conversion efficiency of dye-sensitized TiO\(_2\) photoelectrochemical cells by coupling to photonic crystals. J. Phys. Chem. B 109(13), 6334–6342 (2005)Google Scholar
  13. S. Colodrero, A. Mihi, L. Haggman, M. Ocaña, G. Boschloo, A. Hagfeldt, H. Míguez, Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv. Mater. 21(7), 764–770 (2009)CrossRefGoogle Scholar
  14. D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, H. Míguez, Introducing structural colour in dscs by using photonic crystals: interplay between conversion efficiency and optical properties. Energ. Environ. Sci. (2012). doi: 10.1039/C2EE02658A
  15. K. Sakoda, Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4(5), 167–176 (1999)ADSCrossRefGoogle Scholar
  16. D. Mittleman, J. Bertone, P. Jiang, K. Hwang, V. Colvin, Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation. J. Chem. Phys. 111(1), 345–354 (1999)ADSCrossRefGoogle Scholar
  17. R. Rengarajan, D. Mittleman, C. Rich, V. Colvin, Effect of disorder on the optical properties of colloidal crystals. Phys. Rev. E 71(1), Part 2, 15968–15976 (2005)Google Scholar
  18. A. Mihi, H. Míguez, Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109(33), 15968–15976 (2005)CrossRefGoogle Scholar
  19. S. Ito, S. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2(11), 693–698 (2008)ADSCrossRefGoogle Scholar
  20. A. Mihi, F. Lopez-Alcaraz, H. Míguez, Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. Appl. Phys. Lett. 88(19), 193110 (2006)ADSCrossRefGoogle Scholar
  21. R. Pozas, A. Mihi, M. Ocana, H. Míguez, Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mat. 18(9), 1183–1187 (2006)CrossRefGoogle Scholar
  22. A. Mihi, M.E. Calvo, J. Anta, H. Míguez, Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112(1), 13–17 (2008)CrossRefGoogle Scholar
  23. S.-H.A. Lee, N. Abrams, P. Hoertz, G. Barber, L. Halaoui, T. Mallouk, Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J. Phys. Chem. B 112(46), 14415–14421 (2008)CrossRefGoogle Scholar
  24. M. Nedelcu, S. Guldin, M. Orilall, J. Lee, S. Hüttner, E. Crossland, S. Warren, C. Ducati, P. Laity, D. Eder, U. Wiesner, U. Steiner, H. Snaith, Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO\(_2\). J. Mater. Chem. 20(7), 1261–1268 (2010)CrossRefGoogle Scholar
  25. P. Jiang, J. Bertone, K. Hwang, V. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132–2140 (1999)CrossRefGoogle Scholar
  26. H. Míguez, G. Ozin, S. Yang, N. Tetreault, Mechanical stability enhancement by pore size connectivity control in colloidal crystals by layer-by-growth of oxide, U.S. Patent App. 11/878,023, 2007Google Scholar
  27. S. Guldin, Nanostructuring inorganic material by copolymer-assisted self-assembly and its multifunctional use for dye-sensitised solar cells, Master’s thesis, Technische Universität München, 2008Google Scholar
  28. A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell. Chem. Phys. Lett. 277(1–3), 105–108 (1997)MathSciNetADSCrossRefGoogle Scholar
  29. M. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-x2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)Google Scholar
  30. Y. Seo, K. Woo, J. Kim, H. Lee, W. Lee, Rapid fabrication of an inverse opal TiO\(_2\) photoelectrode for DSSC using a binary mixture of TiO\(_2\) nanoparticles and polymer microspheres. Adv. Funct. Mater. 21(16), 3094–3103 (2011)CrossRefGoogle Scholar
  31. A. Mihi, C. Zhang, P. Braun, Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. Angewandte Chemie-Int. Ed. 50(25), 5711–5714 (2011)CrossRefGoogle Scholar
  32. J.-H. Shin, J. Moon, Bilayer inverse opal TiO\(_2\) electrodes for dye-sensitized solar cells via post-treatment. Langmuir 27(10), 6311–6315 (2011)CrossRefGoogle Scholar
  33. B. Hatton, L. Mishchenko, S. Davis, K. Sandhage, J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010)ADSCrossRefGoogle Scholar
  34. L. Liu, S. Karuturi, L. Su, A.I.Y. Tok, TiO\(_2\) inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energ. Environ. Sci. 4(1), 209–215 (2011)CrossRefGoogle Scholar
  35. S. Guldin, P. Docampo, M. Stefik, G. Kamita, U. Wiesner, H. Snaith, U. Steiner, Layer-by-layer formation of block copolymer derived TiO\(_2\) for solid state dye-sensitized solar cells. Small 8(3), 432–440 (2012)CrossRefGoogle Scholar
  36. S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Míguez, E. Palomares, Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 22(6), 1303–1310 (2012)Google Scholar
  37. D.-K. Hwang, B. Lee, D.-H. Kim, R. Chang, Efficiency enhancement in dye-sensitized solar cells by three-dimensional photonic crystals, Applied Physics Express, vol 5 issue 12, 122–103, 2012Google Scholar
  38. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO\(_{2}\) solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998)ADSCrossRefGoogle Scholar
  39. J. Melas-Kyriazi, I.-K. Ding, A. Marchioro, A. Punzi, B. Hardin, G. Burkhard, N. Tetreault, M. Grätzel, J.-E. Moser, M. McGehee, The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv. Energ. Mater. 1(3), 407–414 (2011)Google Scholar
  40. J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. Friend, S. Moratti, A. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376(6540), 498–500 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Fédérale de Lausanne, Department of Materials ScienceÉcole PolytechniqueLausanneSwitzerland

Personalised recommendations