Skip to main content

Optical Aspects of Thin Films and Interfaces

  • Chapter
  • First Online:
Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Much of the presented work has been devoted to the design of photonic structures by soft matter selfassembly. This chapter shall give a general introduction to the optics of thin films and interfaces and furthermore explain the main concepts and techniques that were used to analyse the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)

    Article  Google Scholar 

  • D. Griffiths, Introduction to Electrodynamics, 3rd edn. (Benjamin Cummings, New York, 1999)

    Google Scholar 

  • E. Hecht, Optics, 4th edn. (Pearson, NJ, 2003)

    Google Scholar 

  • O. Heavens, The Optical Properties of Thin Solid Films (Dover, New York, 1992)

    Google Scholar 

  • Wikimedia-public domain graphic http://commons.wikimedia.org (2011)

  • P. Rouard, Etudes des proprietes optiques des lames metalliques tres minces. Annales de Physique 7, 291–384 (1937)

    Google Scholar 

  • G. Fowles, Introduction to Modern Optics, 1st edn. (Dover Publications, New York, 1990)

    Google Scholar 

  • M. Born, E. Wolf Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • E. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • M. Kolle, Photonic structures inspired by nature. Ph.D. thesis, University of Cambridge, Physics Department, 2010

    Google Scholar 

  • G. Burkhard, E. Hoke, M. McGehee, Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22(30), 3293–3297 (2010)

    Article  Google Scholar 

  • H. Macleod, Thin Film Optical Filters, 3rd edn. (Institute of Physics Publishing, Bristol, 2001)

    Book  Google Scholar 

  • E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • C. Lopez, Materials aspects of photonic crystals. Adv. Mater. 15(20), 1679–1704 (2003)

    Article  ADS  Google Scholar 

  • K. Arpin, A. Mihi, H. Johnson, A. Baca, J. Rogers, J. Lewis, P. Braun, Multidimensional architectures for functional optical devices. Adv. Mater. 22(10) SI, 1084–1101 (2010)

    Google Scholar 

  • J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    Google Scholar 

  • A. Taflove, Computational Electrodynamics, the Finite-Difference Time-Domain Method, 3rd edn. (Artech House Publishers, Boston, 2005)

    Google Scholar 

  • K. Ho, C. Chan, C. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65(25), 3152–3155 (1990)

    Google Scholar 

  • V. Veselago, Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Soviet Physics Uspekhi-USSR 10(4), 507–514 (1968)

    ADS  Google Scholar 

  • J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  • R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  • V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, A. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  • G. Dolling, M. Wegener, C. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32(1), 53–55 (2007)

    Article  ADS  Google Scholar 

  • S. Burgos, R. de Waele, A. Polman, H. Atwater, A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater. 9(5), 407–412 (2010)

    Article  ADS  Google Scholar 

  • J. Pendry, A chiral route to negative refraction. Science 306(5700), 1353–1355 (2004)

    Article  ADS  Google Scholar 

  • S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102(2), 023901 (2009)

    Article  ADS  Google Scholar 

  • K. Hur, Y. Francescato, V. Giannini, S. Maier, R. Hennig, U. Wiesner, Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angewandte Chemie - Int. Ed. 123(50), 12191–12195 (2011)

    Article  Google Scholar 

  • D. Haduk, P. Harper, S. Gruner, C. Honeker, G. Kim, E. Thomas, L. Fetters, The gyroid-a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27(15), 4063–4075 (1994)

    Article  ADS  Google Scholar 

  • C. Park, J. Yoon, E. Thomas, Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44(22), 6725–6760 (2003)

    Article  Google Scholar 

  • T. Epps, E. Cochran, T. Bailey, R. Waletzko, C. Hardy, F. Bates, Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37, 8325–8341 (2004)

    Article  ADS  Google Scholar 

  • Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita, I. Noda, Superlattice structures in morphologies of the ABC triblock copolymers. Macromolecules 27(23), 6755–6760 (1994)

    Article  ADS  Google Scholar 

  • S. Vignolini, N.A. Yufa, P.S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J.J. Baumberg, U. Steiner, A 3D optical metamaterial made by self-assembly. Adv. Mater. 24(10), OP23-OP27 (2012)

    Google Scholar 

  • N. Hutchinson, T. Coquil, A. Navid, L. Pilon, Effective optical properties of highly ordered mesoporous thin films. Thin Solid Films 518(8), 2141–2146 (2010)

    Article  ADS  Google Scholar 

  • M. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. Lopez-Lopez, O. Sanchez-Sobrado, H. Míguez, Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications. Energy Environ. Sci. 4, 4800–4812 (2011)

    Article  Google Scholar 

  • S. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks, M. Grätzel, Self-organization of TiO\(_2\) nanoparticles in thin films. Chem. Mater. 10(9), 2419–2425 (1998)

    Article  Google Scholar 

  • C. Lopez-Lopez, S. Colodrero, S. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, H. Míguez, Enhanced diffusion through porous nanoparticle optical multilayers. J. Mater. Chem. 22(5), 1751–1757 (2012)

    Article  Google Scholar 

  • J. Birchak, C. Gardner, J. Hipp, J. Victor, High dielectric-constant microwave probes for sensing soil-moisture. Proc. IEEE 62(1), 93–98 (1974)

    Article  Google Scholar 

  • O. Mossotti, Memorie Di Matematica E Di Fisica Della Societa Italiana Delle Scienze Residente In Modena. Nella Tipografia Camerale Modena (1850)

    Google Scholar 

  • R. Clausius, Die mechanische Behandlung der Elektrizität (1879)

    Google Scholar 

  • P. Van Rysselberghe, Remarks concerning the Clausius-Mossotti law. J. Phys. Chem. 36(4), 1152–1155 (1932)

    Article  Google Scholar 

  • R. Feynman, R. Leighton, M. Sands, Feynman Lectures on Physics, vol. 2, Chap. 32 (Addison Wesley, Reading, 1989)

    Google Scholar 

  • L. Lorenz, Über die Refractionsconstante. Annalen der Physik 11, 70–103 (1880)

    Article  ADS  Google Scholar 

  • H. Lorenz, Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte. Annalen der Physik 9, 641–665 (1880)

    Article  ADS  Google Scholar 

  • D. Aspnes, Optical-properties of thin-films. Thin Solid Films 89(3), 249–262 (1982)

    Article  ADS  Google Scholar 

  • M. Kolle, personal graphics collection

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Optical Aspects of Thin Films and Interfaces. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_2

Download citation

Publish with us

Policies and ethics