Skip to main content

Self-Assembly of Soft Matter

  • Chapter
  • First Online:
Inorganic Nanoarchitectures by Organic Self-Assembly

Part of the book series: Springer Theses ((Springer Theses))

  • 923 Accesses

Abstract

Molecular self-assembly is a common principle of structure formation in natural and synthetic materials. This chapter aims to explain the underlying driving forces, from a broad perspective to the specific materials systems used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice \(\chi \) may have more complex dependence on the temperature, for example \(\chi =A/T+B\).

References

  • I. Hamley, Nanotechnology with soft materials. Angew. Chem. Int. Ed. 42(15), 1692–1712 (2003)

    Article  Google Scholar 

  • G. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  ADS  Google Scholar 

  • R. Jones, Soft Condensed Matter, 1st edn. (Oxford University Press, Oxford, 2002)

    Google Scholar 

  • Wikimedia-public domain graphic. http://commons.wikimedia.org, 2011

  • N. Seeman, Nanomaterials Based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010)

    Article  Google Scholar 

  • A. Imhof, D. Pine, Ordered macroporous materials by emulsion templating. Nature 389(6654), 948–951 (1997)

    Article  ADS  Google Scholar 

  • Y. Song, R. Garcia, R. Dorin, H. Wang, Y. Qiu, E. Coker, W. Steen, J. Miller, J. Shelnutt, Synthesis of platinum nanowire networks using a soft template. Nano Lett. 7(12), 3650–3655 (2007)

    Article  ADS  Google Scholar 

  • P. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  ADS  Google Scholar 

  • A. Pinheiro, D. Han, W. Shih, H. Yan, Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)

    Article  ADS  Google Scholar 

  • C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397), 710–712 (1992)

    Article  ADS  Google Scholar 

  • J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson, E. Sheppard, S. McCullen, J. Higgins, J. Schlenker, A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114(27), 10834–10843 (1992)

    Article  Google Scholar 

  • G. Attard, J. Glyde, C. Goltner, Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378(6555), 366–368 (1995)

    Article  ADS  Google Scholar 

  • T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45(1), 38–68 (2006)

    Article  Google Scholar 

  • S. Sergeyev, W. Pisula, Y. Geerts, Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36(12), 1902–1929 (2007)

    Article  Google Scholar 

  • M. Huggins, Thermodynamics properties of solutions of long-chain compounds. Ann. NY. Acad. Sci. 43, 1–32 (1942)

    Article  ADS  Google Scholar 

  • P. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  ADS  Google Scholar 

  • S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Structure formation via polymer demixing in spin-cast films. Macromolecules 30(17), 4995–5003 (1997)

    Article  ADS  Google Scholar 

  • M. Rubinstein, R. Colby, Polymer Physics, 1st edn. (Oxford University Press, Oxford, 2003)

    Google Scholar 

  • G. Strobl, The Physics of Polymers, 3rd edn. (Springer, Berlin, 2007)

    Google Scholar 

  • F. Bates, G. Fredrickson, Block copolymers-designer soft materials. Phys. Today 52(2), 32–38 (1999)

    Article  Google Scholar 

  • T. Hashimoto, M. Shibayama, H. Kawai, Domain-boundary structure of styrene-isoprene block co-polymer films cast from solution. 4. molecular-weight dependence of lamellar microdomains. Macromolecules 13(5), 1237–1247 (1980)

    Article  ADS  Google Scholar 

  • E. Helfand, Z. Wasserman, Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9(6), 879–888 (1976)

    Article  ADS  Google Scholar 

  • L. Leibler, Theory of microphase separation in block co-polymers. Macromolecules 13(6), 1602–1617 (1980)

    Article  ADS  Google Scholar 

  • M. Matsen, F. Bates, Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29(4), 1091–1098 (1996)

    Article  ADS  Google Scholar 

  • A. Khandpur, S. Förster, F. Bates, I. Hamley, A. Ryan, W. Bras, K. Almdal, K. Mortensen, Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28(26), 8796–8806 (1995)

    Article  ADS  Google Scholar 

  • M. Matsen, F. Bates, Block copolymer microstructures in the intermediate-segregation regime. J. Chem. Phys. 106(6), 2436–2448 (1997)

    Article  ADS  Google Scholar 

  • W. Zheng, Z. Wang, Morphology of ABC triblock copolymers. Macromolecules 28(21), 7215–7223 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  • T. Epps, E. Cochran, T. Bailey, R. Waletzko, C. Hardy, F. Bates, Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37, 8325–8341 (2004)

    Article  ADS  Google Scholar 

  • A. Hagfeldt, M. Grätzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)

    Article  Google Scholar 

  • M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  ADS  Google Scholar 

  • A. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  ADS  Google Scholar 

  • M. Law, L. Greene, J. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    Article  ADS  Google Scholar 

  • R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)

    Article  ADS  Google Scholar 

  • M. Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 17(18), 4577–4593 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • X. Yang, J. Loos, Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40(5), 1353–1362 (2007)

    Article  ADS  Google Scholar 

  • J. Pendry, A chiral route to negative refraction. Science 306(5700), 1353–1355 (2004)

    Article  ADS  Google Scholar 

  • T. Russell, G. Coulon, V. Deline, D. Miller, Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules 22(12), 4600–4606 (1989)

    Article  ADS  Google Scholar 

  • S. Anastasiadis, T. Russell, S. Satija, C. Majkrzak, Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. Phys. Rev. Lett. 62(16), 1852–1855 (1989)

    Article  ADS  Google Scholar 

  • P. Mansky, Y. Liu, E. Huang, T. Russell, C. Hawker, Controlling polymer-surface interactions with random copolymer brushes. Science 275(5305), 1458–1460 (1997)

    Article  Google Scholar 

  • J. Heier, E. Kramer, S. Walheim, G. Krausch, Thin diblock copolymer films on chemically heterogeneous surfaces. Macromolecules 30(21), 6610–6614 (1997)

    Article  ADS  Google Scholar 

  • K. Amundson, E. Helfand, X. Quan, S. Hudson, S. Smith, Alignment of lamellar block-copolymer microstructure in an electric-field. 2. Mechanisms of alignment. Macromolecules 27(22), 6559–6570 (1994)

    Article  ADS  Google Scholar 

  • T. Thurn-Albrecht, J. DeRouchey, T. Russell, H. Jaeger, Overcoming interfacial interactions with electric fields. Macromolecules 33(9), 3250–3253 (2000)

    Article  ADS  Google Scholar 

  • A. Knoll, A. Horvat, K. Lyakhova, G. Krausch, G. Sevink, A. Zvelindovsky, R. Magerle, Phase behavior in thin films of cylinder-forming block copolymers. Phys. Rev. Lett. 89(3), 035501 (2002)

    Google Scholar 

  • H. Elbs, C. Drummer, V. Abetz, G. Krausch, Thin film morphologies of ABC triblock copolymers prepared from solution. Macromolecules 35(14), 5570–5577 (2002)

    Article  ADS  Google Scholar 

  • U. Scherf, A. Gutacker, N. Koenen, All-conjugated block copolymers. Acc. Chem. Res. 41(9), 1086–1097 (2008)

    Article  Google Scholar 

  • S. Darling, Block copolymers for photovoltaics. Energy Environ. Sci. 2(12), 1266–1273 (2009)

    Article  Google Scholar 

  • M. Sommer, S. Hüttner, M. Thelakkat, Donor-acceptor block copolymers for photovoltaic applications. J. Mater. Chem. 20(48), 10788–10797 (2010)

    Article  Google Scholar 

  • M. Hillmyer, Nanoporous materials from block copolymer precursors. Block Copolymers II. Adv. Polym. Sci. 190, 137–181 (2005)

    Article  Google Scholar 

  • M. Li, C. Ober, Block copolymer patterns and templates. Mater. Today 9(9), 30–39 (2006)

    Article  Google Scholar 

  • S. Darling, Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32(10), 1152–1204 (2007)

    Article  Google Scholar 

  • Q. Huo, D. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, R. Leon, P. Petroff, F. Schüth, G. Stucky, Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 368(6469), 317–321 (1994)

    Article  ADS  Google Scholar 

  • S. Bagshaw, E. Prouzet, T. Pinnavaia, Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 269(5228), 1242–1244 (1995)

    Article  ADS  Google Scholar 

  • M. Templin, A. Franck, A. DuChesne, H. Leist, Y. Zhang, R. Ulrich, V. Schädler, U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278(5344), 1795–1798 (1997)

    Article  ADS  Google Scholar 

  • P. Simon, R. Ulrich, H. Spiess, U. Wiesner, Block copolymer-ceramic hybrid materials from organically modified ceramic precursors. Chem. Mater. 13(10), 3464–3486 (2001)

    Article  Google Scholar 

  • S. Warren, F. Disalvo, U. Wiesner, Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat. Mater. 6(2), 156–161 (2007)

    Article  ADS  Google Scholar 

  • M. Stefik, S. Wang, R. Hovden, H. Sai, M. Tate, D. Muller, U. Steiner, S. Gruner, U. Wiesner, Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles. J. Mater. Chem. 22(3), 1078–1087 (2012)

    Article  Google Scholar 

  • M. Stefik, J. Song, H. Sai, M. Orilall, S. Guldin, P. Boldrighini, U. Steiner, S. Gruner, and U. Wiesner, Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable morphology control. Manuscript in preparation (2013)

    Google Scholar 

  • S. De Paul, J. Zwanziger, R. Ulrich, U. Wiesner, H. Spiess, Structure, mobility, and interface characterization of self-organized organic-inorganic hybrid materials by solid-state NMR. J. Am. Chem. Soc. 121(24), 5727–5736 (1999)

    Article  Google Scholar 

  • B. Garcia, M. Kamperman, R. Ulrich, A. Jain, S. Gruner, U. Wiesner, Morphology diagram of a diblock copolymer-aluminosilicate nanoparticle system. Chem. Mater. 21(22), 5397–5405 (2009)

    Article  Google Scholar 

  • A. Jain, U. Wiesner, Silica-type mesostructures from block copolymer phases: formation mechanism and generalization to the dense nanoparticle regime. Macromolecules 37(15), 5665–5670 (2004)

    Article  ADS  Google Scholar 

  • R. Thompson, V. Ginzburg, M. Matsen, A. Balazs, Predicting the mesophases of copolymer-nanoparticle composites. Science 292(5526), 2469–2472 (2001)

    Article  Google Scholar 

  • K. Hur, R. Hennig, F. Escobedo, U. Wiesner, Mesoscopic structure prediction of nanoparticle assembly and coassembly: theoretical foundation. J. Chem. Phys. 133(19), 194108 (2010)

    Article  ADS  Google Scholar 

  • H. Hamaker, The London-van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  ADS  Google Scholar 

  • E. Lifshitz, The theory of molecular attractive forces between solids. Soviet Phys. JETP USSR. 2(1), 73–83 (1956)

    Google Scholar 

  • P. Debye, E. Hückel, The theory of electrolytes I. The lowering of the freezing point and related occurrences. Phys. Z. 24, 185–206 (1923)

    MATH  Google Scholar 

  • J. Zhang, Y. Li, X. Zhang, B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 22(38), 4249–4269 (2010)

    Article  Google Scholar 

  • J. Galisteo-Lopez, M. Ibisate, R. Sapienza, L. Froufe-Perez, A. Blanco, C. Lopez, Self-assembled photonic structures. Adv. Mater. 23(1), 30–69 (2011)

    Article  ADS  Google Scholar 

  • D. Norris, E. Arlinghaus, L. Meng, R. Heiny, L. Scriven, Opaline photonic crystals: how does self-assembly work? Adv. Mater. 16(16), 1393–1399 (2004)

    Article  Google Scholar 

  • N. Denkov, O. Velev, P. Kralchevsky, I. Ivanov, H. Yoshimura, K. Nagayama, Mechanism of formation of 2-dimensional crystals from latex-particles on substrates. Langmuir 8(12), 3183–3190 (1992)

    Article  Google Scholar 

  • R. Deegan, O. Bakajin, T. Dupont, G. Huber, S. Nagel, T. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  ADS  Google Scholar 

  • P. Jiang, J. Bertone, K. Hwang, V. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132–2140 (1999)

    Article  Google Scholar 

  • F. Marlow, M. Muldarisnur, P. Sharifi, R. Brinkmann, C. Mendive, Opals: status and prospects. Angew. Chem. Int. Ed. 48(34), 6212–6233 (2009)

    Article  Google Scholar 

  • J. Joannopoulos, S. Johnson, J. Winn, R.D. Meade, Photonic Crystals: Molding The Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    Google Scholar 

  • K. Busch, S. John, Photonic band gap formation in certain self-organizing systems. Phys. Rev. E. 58(3, Part b), 3896–3908 (1998)

    Google Scholar 

  • Q. Meng, C. Fu, Y. Einaga, Z. Gu, A. Fujishima, O. Sato, Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO\(_2\) semiconductors. Chem. Mater. 14(1), 83–88 (2002)

    Article  Google Scholar 

  • B. Hatton, L. Mishchenko, S. Davis, K. Sandhage, J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Nat. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010)

    Article  ADS  Google Scholar 

  • C. Lopez, Materials aspects of photonic crystals. Adv. Mater. 15(20), 1679–1704 (2003)

    Article  ADS  Google Scholar 

  • M. Leunissen, C. Christova, A. Hynninen, C. Royall, A. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Ionic colloidal crystals of oppositely charged particles. Nature 437(7056), 235–240 (2005)

    Article  ADS  Google Scholar 

  • A.-P. Hynninen, J. Thijssen, E. Vermolen, M. Dijkstra, A. van Blaaderen, Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6(3), 202–205 (2007)

    Article  ADS  Google Scholar 

  • F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, H. Miyazaki, Opal-like photonic crystal with diamond lattice. Appl. Phys. Lett. 79(15), 2309–2311 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Guldin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guldin, S. (2013). Self-Assembly of Soft Matter. In: Inorganic Nanoarchitectures by Organic Self-Assembly. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00312-2_1

Download citation

Publish with us

Policies and ethics