Advertisement

Spectral Expansion Solution Methodology for QBD-M Processes and Applications in Future Internet Engineering

  • Tien Van Do
  • Ram Chakka
  • János Sztrik
Part of the Studies in Computational Intelligence book series (SCI, volume 479)

Abstract

Quasi Simultaneous-Multiple Births and Deaths (QBD-M) Processes are used to model many of the traffic, service and related problems in modern communication systems. Their importance is on the increase due to the great strides that are taking place in telecommunication systems and networks. This paper presents the overview of the Spectral Expansion (SE) for the steady state solution of QBD-M processes and applications in future Internet engineering.

Keywords

QBD-M Compound Poisson Process Spectral Expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallace, V.L.: The Solution of Quasi Birth and Death Processes Arising from multiple Access Computer Systems. PhD thesis, University of Michigan (1969)Google Scholar
  2. 2.
    Evans, R.V.: Geometric Distribution in some Two-dimensional Queueing Systems. Operations Research 15, 830–846 (1967)CrossRefGoogle Scholar
  3. 3.
    Neuts, M.F.: Matrix Geometric Soluctions in Stochastic Model. Johns Hopkins University Press, Baltimore (1981)Google Scholar
  4. 4.
    Mitrani, I., Chakka, R.: Spectral expansion solution for a class of Markov models: Application and comparison with the matrix-geometric method. Performance Evaluation 23, 241–260 (1995)MATHCrossRefGoogle Scholar
  5. 5.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability (1999)Google Scholar
  6. 6.
    Chakka, R., Do, T.V.: The MM \({\sum_{k=1}^{K}{CPP_k}}/GE/c/L~G\)-Queue with Heterogeneous Servers: Steady state solution and an application to performance evaluation. Performance Evaluation 64, 191–209 (2007)CrossRefGoogle Scholar
  7. 7.
    Do, T.V., Krieger, U.R., Chakka, R.: Performance modeling of an apache web server with a dynamic pool of service processes. Telecommunication Systems 39(2), 117–129 (2008)CrossRefGoogle Scholar
  8. 8.
    Krieger, U.R., Naoumov, V., Wagner, D.: Analysis of a Finite FIFO Buffer in an Advanced Packet-Switched Network. IEICE Trans. Commun. E81-B, 937–947 (1998)Google Scholar
  9. 9.
    Naoumov, V., Krieger, U.R., Warner, D.: Analysis of a Multi-Server Delay-Loss System With a General Markovian Arrival Process. In: Chakravarthy, S.R., Alfa, A.S. (eds.) Matrix-analytic Methods in Stochastic Models. Lecture Notes in Pure and Applied Mathematics, vol. 183, pp. 43–66. Marcel Dekker (1997)Google Scholar
  10. 10.
    Rosti, E., Smirni, E., Sevcik, K.C.: On processor saving scheduling policies for multiprocessor systems. IEEE Trans. Comp. 47, 47–2 (1998)Google Scholar
  11. 11.
    Wierman, A., Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: How many servers are best in a dual-priority M/PH/k system? Perform. Eval. 63(12), 1253–1272 (2006)CrossRefGoogle Scholar
  12. 12.
    Seelen, L.P.: An Algorithm for Ph/Ph/c queues. European Journal of Operational Research 23, 118–127 (1986)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gail, H.R., Hantler, S.L., Taylor, B.A.: Spectral analysis of M/G/1 type Markov chains. Technical Report RC17765, IBM Research Division (1992)Google Scholar
  14. 14.
    Chakka, R.: Performance and Reliability Modelling of Computing Systems Using Spectral Expansion. PhD thesis, University of Newcastle upon Tyne (Newcastle upon Tyne) (1995)Google Scholar
  15. 15.
    Grassmann, W.K., Drekic, S.: An analytical solution for a tandem queue with blocking. Queueing System (1-3), 221–235 (2000)Google Scholar
  16. 16.
    Skianis, C., Kouvatsos, D.: An Information Theoretic Approach for the Performance Evaluation of Multihop Wireless Ad Hoc Networks. In: Kouvatsos, D.D. (ed.) Proceedings of the Second International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks (HET-NETs 2004), Ilkley, UK, P81/1–13 (July 2004)Google Scholar
  17. 17.
    Kouvatsos, D.D.: A maximum entropy analysis of the G/G/1 Queue at Equilibrium. Journal of Operations Research Society 39, 183–200 (1998)Google Scholar
  18. 18.
    Do, T.V.: An Efficient Solution to a Retrial Queue for the Performability Evaluation of DHCP. Computers & OR 37(7), 1191–1198 (2010)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Chakka, R.: Spectral Expansion Solution for some Finite Capacity Queues. Annals of Operations Research 79, 27–44 (1998)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Chakka, R., Harrison, P.G.: Analysis of MMPP/M/c/L queues. In: Proceedings of the Twelfth UK Computer and Telecommunications Performance Engineering Workshop, Edinburgh, pp. 117–128 (1996)Google Scholar
  21. 21.
    Chakka, R., Harrison, P.G.: A Markov modulated multi-server queue with negative customers - the MM CPP/GE/c/L G-queue. Acta Informatica 37, 881–919 (2001)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Chakka, R., Harrison, P.G.: The MMCPP/GE/c queue. Queueing Systems: Theory and Applications 38, 307–326 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Chakka, R., Do, T.V.: The \(MM \sum_{k = 1}^K CPP_k/GE/c/L\) G-Queue and Its Application to the Analysis of the Load Balancing in MPLS Networks. In: Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN 2002), Tampa, FL, USA, November 6-8, pp. 735–736 (2002)Google Scholar
  24. 24.
    Chakka, R., Do, T.V., Pandi, Z.: A Generalized Markovian Queue and Its Applications to Performance Analysis in Telecommunications Networks. In: Kouvatsos, D. (ed.) Performance Modelling and Analysis of Heterogeneous Networks, pp. 371–387. River Publisher (2009)Google Scholar
  25. 25.
    Chakka, R., Ever, E., Gemikonakli, O.: Joint-state modeling for open queuing networks with breakdowns, repairs and finite buffers. In: 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 260–266. IEEE Computer Society (2007)Google Scholar
  26. 26.
    Chakka, R., Mitrani, I.: Multiprocessor systems with general breakdowns and repairs. In: SIGMETRICS, pp. 245–246 (1992)Google Scholar
  27. 27.
    Chakka, R., Mitrani, I.: Heterogeneous multiprocessor systems with breakdowns: Performance and optimal repair strategies. Theor. Comput. Sci. 125(1), 91–109 (1994)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Do, T.V., Chakka, R., Harrison, P.G.: An integrated analytical model for computation and comparison of the throughputs of the UMTS/HSDPA user equipment categories. In: Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM 2007, pp. 45–51. ACM, New York (2007)Google Scholar
  29. 29.
    Van Do, T., Do, N.H., Chakka, R.: Performance evaluation of the high speed downlink packet access in communications networks based on high altitude platforms. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008. LNCS, vol. 5055, pp. 310–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Do, T.V., Papp, D., Chakka, R., Truong, M.X.T.: A Performance Model of MPLS Multipath Routing with Failures and Repairs of the LSPs. In: Kouvatsos, D. (ed.) Performance Modelling and Analysis of Heterogeneous Networks, pp. 27–43. River Publisher (2009)Google Scholar
  31. 31.
    Drekic, S., Grassmann, W.K.: An eigenvalue approach to analyzing a finite source priority queueing model. Annals OR 112(1-4), 139–152 (2002)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ever, E., Gemikonakli, O., Chakka, R.: A mathematical model for performability of beowulf clusters. In: Annual Simulation Symposium, pp. 118–126. IEEE Computer Society (2006)Google Scholar
  33. 33.
    Ever, E., Gemikonakli, O., Chakka, R.: Analytical modelling and simulation of small scale, typical and highly available beowulf clusters with breakdowns and repairs. Simulation Modelling Practice and Theory 17(2), 327–347 (2009)CrossRefGoogle Scholar
  34. 34.
    Grassmann, W.K.: The use of eigenvalues for finding equilibrium probabilities of certain markovian two-dimensional queueing problems. INFORMS Journal on Computing 15(4), 412–421 (2003)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Grassmann, W.K., Drekic, S.: An analytical solution for a tandem queue with blocking. Queueing Syst. 36(1-3), 221–235 (2000)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Mitrani, I.: Approximate solutions for heavily loaded markov-modulated queues. Perform. Eval. 62(1-4), 117–131 (2005)CrossRefGoogle Scholar
  37. 37.
    Tran, H.T., Do, T.V.: Computational Aspects for Steady State Analysis of QBD Processes. Periodica Polytechnica, Ser. El. Eng., 179–200 (2000)Google Scholar
  38. 38.
    Zhao, Y., Grassmann, W.K.: A numerically stable algorithm for two server queue models. Queueing Syst. 8(1), 59–79 (1991)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Do, T.V., Chakka, R.: A New Performability Model for Queueing and FDL-related Burst Loss in Optical Switching Nodes. Computer Communications 33(S), 146–151 (2010)CrossRefGoogle Scholar
  40. 40.
    Do, T.V., Chakka, R., Do, N., Pap, L.: A Markovian queue with varying number of servers and applications to the performance comparison of HSDPA user equipment. Acta Informatica 48, 243–269 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Tien Van Do
    • 1
  • Ram Chakka
    • 2
  • János Sztrik
    • 3
  1. 1.Department of Networked Systems and ServicesBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Meerut Institute of Engineering and Technology (MIET)MeerutIndia
  3. 3.Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations