Advertisement

Nanocomposites

  • Moones RahmandoustEmail author
  • Majid R. Ayatollahi
Chapter
  • 695 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 39)

Abstract

The idea of composites stem from the idea that by combining two or more distinct materials one may engineer a new material with properties that are a better combination of properties of the initial components. Composites, as schematically shown in Fig. 3.1, are engineered materials that consist of two or more insoluble phases combined together; a continuous phase, known as the matrix, as well as interdispersed components known as the reinforcing phase. The matrix is typically the major constituent that provides durability for the overall composite and it can be for instance, a metallic, a ceramic or a polymer material. The reinforcing inclusions are the structure’s load carriers that can be in the form of fibers, particles or flakes. This phase of the composite structure provides its stiffness and strength and hence, the properties of composites depend on the properties of each of these phases, the geometry of dispersed phase, i.e. their size, distribution and orientation, and finally the amount of each phase.

Keywords

Representative Volume Element Effective Thermal Conductivity Fiber Volume Fraction Carbon Fiber Reinforce Polymer Short Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aboudi, J.: Mechanics of composite materials: a unified micromechanical approach. Stud. Appl. Mech. 29, 338 (1991)Google Scholar
  2. Afrooz, I.E., Öchsner, A., Rahmandoust, M.: Effects of the carbon nanotube distribution on the macroscopic stiffness of composite materials. Comp. Mater. Sci. 51, 422–429 (2012)CrossRefGoogle Scholar
  3. Afrooz, I.E., Yusoff, P.S.M.B.M., Ahmad, F., Muhsan, A.S.: A numerical analysis for predicting the thermal conductivity of carbon nanotube reinforced copper-matrix nanocomposites. MATEC Web Conf. 13, 04011-1–04011-5 (2014)Google Scholar
  4. Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787–1799 (1999)CrossRefGoogle Scholar
  5. Ajayan, P.M., Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993)CrossRefGoogle Scholar
  6. Ajayan, P.M., et al.: Opening carbon nanotubes with oxygen and implications of filling. Nature 362, 522–525 (1993)CrossRefGoogle Scholar
  7. Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite. Science 256, 1212–1214 (1994)CrossRefGoogle Scholar
  8. Allaoui, A., Baia, S., Chengb, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993–1998 (2002)CrossRefGoogle Scholar
  9. Ando, Y., et al.: Physical properties of multiwalled carbon nanotubes. Int. J. Inorg. Mater. 1, 77–82 (1999)CrossRefGoogle Scholar
  10. Assouline, E., et al.: Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J. Polym. Sci. Part B: Polym. Phys. 41(5), 520–527 (2003)Google Scholar
  11. Bagchi, A., Nomura, S.: On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos. Sci. Technol. 66, 703–712 (2006)CrossRefGoogle Scholar
  12. Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes-the route toward application. Science 197, 787–792 (2002)CrossRefGoogle Scholar
  13. Bell, J.M., et al.: Polymer-carbon nanotube composites: basic science and applications. In: Cairney, J.M., Ringer, S.P., Wuhrer, R. (eds.) Materials Forum, pp. 144–152. Institute of Materials Engineering Australia, Brisbane (2008)Google Scholar
  14. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mate. 6(2), 147–157 (1987)CrossRefGoogle Scholar
  15. Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–577 (2005)CrossRefGoogle Scholar
  16. Bubert, H., et al.: Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diam. Relat. Mater. 12, 811–815 (2003)CrossRefGoogle Scholar
  17. Callister, W.D., Rethwisch, D.G.: Materials science and engineering: an introduction, 8th edn. Wiley, New York (2009)Google Scholar
  18. Chen, C.H., Cheng, C.H.: Effective elastic moduli of misoriented short-fiber composites. Solids Struct. 33(17), 2519–2539 (1996)CrossRefGoogle Scholar
  19. Chen, X.L., Liu, Y.J.: Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comp. Mater. Sci. 29, 1–11 (2004)CrossRefGoogle Scholar
  20. Chiang, C.R.: A statistical theory of the tensile strength of short-fiber-reinforced composites. Compos. Sci. Technol. 50(4), 479–482 (1994)CrossRefGoogle Scholar
  21. Cho, S., et al.: Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scripta Mater. 63, 375–378 (2010)CrossRefGoogle Scholar
  22. Chu, K., Jia, C.-C., Li, W.-S., Wang, P.: Mechanical and electrical properties of carbon-nanotube-reinforced Cu-Ti alloy matrix composites. Phys. Status Solidi A 210(3), 594–599 (2013a)CrossRefGoogle Scholar
  23. Chu, K., Jia, C.-C., Li, W.-S.: Thermal conductivity enhancement in carbon nanotube/Cu-Ti composites. Appl. Phys. A 110, 269–273 (2013b)CrossRefGoogle Scholar
  24. Chu, K., et al.: Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol. 70, 298–304 (2010)CrossRefGoogle Scholar
  25. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong-a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)CrossRefGoogle Scholar
  26. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. Phys. 3, 72–79 (1952)CrossRefGoogle Scholar
  27. Dalton, A.B., et al.: Super-tough carbon-nanotube fibers. Nature 423, 703 (2003)Google Scholar
  28. Deng, C., Zhang, X., Ma, Y., Wang, D.: Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Met. 26, 450–455 (2007)CrossRefGoogle Scholar
  29. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon nanotubes synthesis, structure, properties and applications. Springer, Berlin (2001)Google Scholar
  30. Edidin, A.A., Kurtz, S.M.: Development and validation of the small punch test for UHMWPE used in total joint replacements. Key Eng. Mater. 198, 1–40 (2001)CrossRefGoogle Scholar
  31. Erik, T.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  32. Esawi, A., Borady, M.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486–492 (2008)CrossRefGoogle Scholar
  33. Esawi, A.M.K., Farag, M.M.: Carbon nanotubes reinforced composites: potential and current challenges. Mater. Design. 28, 2394–2401 (2007)CrossRefGoogle Scholar
  34. Esawi, A.M.K., Morsi, K.: Dispersion of carbon nanotubes (CNT) in aluminium powder. Compos. Part A: Appl. Sci. Manuf. 38, 646–650 (2007)CrossRefGoogle Scholar
  35. Estili, M., Kawasaki, A.: An approach to mass-producing individually aluminadecorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr. Mater. 58, 906–909 (2008)CrossRefGoogle Scholar
  36. Farsadi, M., Öchsner, A., Rahmandoust, M.: Numerical investigation of composite materials reinforced with waved carbon nanotubes. J. Compos. Mater. 47, 1425–1434 (2013)CrossRefGoogle Scholar
  37. Feng, Y., et al.: Removal of some impurities from carbon nanotubes. Chem. Phys. Lett. 375, 645–648 (2003)CrossRefGoogle Scholar
  38. Fereidoon, A., Saeedi, E., Ahmadimoghadam, B.: Comparison between different finite element methods for foreseeing the elastic properties of carbon nanotube reinforced epoxy resin composite. In: Proceedings of the World Congress on Engineering—Vol II, WCE-2008, London (2008)Google Scholar
  39. Ferrari, M., Johnson, G.C.: The effective elasticities of short fiber composites with arbitrary orientation distribution. Mech. Mater. 8(1), 67–73 (1989)CrossRefGoogle Scholar
  40. Fiamegkou, E., Athanasopoulos, N., Kostopoulos, V.: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems. Polym. Compos. 35, 1997–2009 (2014)CrossRefGoogle Scholar
  41. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63, 1689–1703 (2003)CrossRefGoogle Scholar
  42. Fukuda, H., Kawata, K.: On young’s modulus of short fiber composites. Fiber Sci. Technol. 7(3), 207–222 (1974)CrossRefGoogle Scholar
  43. Goh, R.G.S., Motta, N., Bell, J.I.M., Waclawik, E.R.: Effects of substrate curvature on the adsorption of poly(3-hexylthiophene) on single-walled carbon nanotubes. Appl. Phys. Lett. 88(5), 053101–053103 (2006)CrossRefGoogle Scholar
  44. Gómez-del Rio, T., et al.: Influence of single-walled carbon nanotubes on the effective elastic constants of poly (ethylene terephthalate). Compos. Sci. Technol. 70, 284–29 (2010)Google Scholar
  45. Goze, C., et al.: Elastic and mechanical properties of carbon nanotubes. Synth. Met. 103, 2500–2501 (1999)CrossRefGoogle Scholar
  46. Gupta, A.K., Harsha, S.P.: Analysis of mechanical properties of carbon nanotube reinforced polymer composites using continuum mechanics approach. Procedia Mater. Sci. 6, 18–25 (2014)CrossRefGoogle Scholar
  47. Haitao, W., Zhenhan, Y.: Large scale analysis of mechanical properties in 3D fiber-reinforced composites using a new fast multipole boundary element method. Tsinghua Sci. Technol. 12(5), 554–561 (2007)CrossRefGoogle Scholar
  48. Halpin, J.C., Kardos, J.L.: The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344–352 (1976)CrossRefGoogle Scholar
  49. Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011)CrossRefGoogle Scholar
  50. Hashin, Z.: Analysis of composite materials. J. Appl. Mech. 50(3), 481–506 (1983)CrossRefGoogle Scholar
  51. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)CrossRefGoogle Scholar
  52. Iijima, S.: Carbon nanotubes: past, present and future. Phys. B 323, 1–5 (2002)CrossRefGoogle Scholar
  53. Kalamkarov, A.L., Askari, D., Veedu, V.P., Ghasemi-Nejhad, M.N.: Generally cylindrical orthotropic constitutive properties modeling of matrix-filled single-walled nanotubes: axial mechanicalproperties. J. Compos. Mater. 41, 757–779 (2007)CrossRefGoogle Scholar
  54. Kanagaraj, S., et al.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67, 3071–3077 (2007)CrossRefGoogle Scholar
  55. Kaw, A.K.: Mechanics of composite materials, 2nd edn. CRC Press Taylor and Francis, Boca Raton (2006)Google Scholar
  56. Khare, R., Bose, S.: Carbon nanotube based composites- a review. J. Minerals Mater. Charact. Eng. 4, 31–46 (2005)Google Scholar
  57. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 215502-1-4 (2001)Google Scholar
  58. Kim, Y.J., et al.: Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005)CrossRefGoogle Scholar
  59. Kim, K.T., et al.: Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scripta Mater. 64, 181–184 (2011)CrossRefGoogle Scholar
  60. Krenchel, H.: Fiber Reinforcement. Akademisk Forlag, Copenhagen (1964)Google Scholar
  61. Kurtz, S.M., et al.: Validation of a small punch testing technique to characterize the mechanical behavior of ultra-high-molecular-polyethylene. Biomaterials 18, 1659–1663 (1997)CrossRefGoogle Scholar
  62. Kuzumaki, T., Miyazawa, K., Ichinose, H., Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 9, 2445–2449 (1998)CrossRefGoogle Scholar
  63. Kwon, H., et al.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570–577 (2009)CrossRefGoogle Scholar
  64. Kwon, H., Park, D.H., Silvain, J.F., Kawasaki, A.: Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos. Sci. Technol. 70, 546–550 (2010)CrossRefGoogle Scholar
  65. Kymakis, E., Alexandrou, I., Amaratunga, G.A.J.: High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93, 1764–1768 (2003)CrossRefGoogle Scholar
  66. Kymakis, E., Koudoumas, E., Franghiadakis, I., Amaratunga, G.A.J.: Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. J. Phys. D Appl. Phys. 39(6), 1058–1063 (2006)CrossRefGoogle Scholar
  67. Lau, K.T., Hui, D.: Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 40, 1605–1606 (2002)CrossRefGoogle Scholar
  68. Liang, X., Ling, L., Lu, C., Liu, L.: Resistivity of carbon fibers/ABS resin composites. Mater. Lett. 43, 144–147 (2000)CrossRefGoogle Scholar
  69. Liang, C., et al.: One-step growth of silica nanotubes and simultaneous filling with indium sulphide nanorods. J. Mater. Chem. 14, 248–252 (2004)CrossRefGoogle Scholar
  70. Li, Q., Kinloch, I.A., Windle, A.H.: Discrete dispersion of single-walled carbon nanotubes. Chem. Commun. 26, 3283–3285 (2005)CrossRefGoogle Scholar
  71. Liu, Y.J., Chen, X.L.: Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Bound. Elem. 1, 316–335 (2003a)Google Scholar
  72. Liu, Y.J., Chen, X.L.: Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. J Mech. Mater. 35, 69–81 (2003b)CrossRefGoogle Scholar
  73. Liu, Y., Nishimura, N., Otani, Y.: Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comp. Mater. Sci. 34, 173–187 (2005)CrossRefGoogle Scholar
  74. Liu, Z.Y., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30(7), 649–655 (2014)CrossRefGoogle Scholar
  75. Makvandi, R., Öchsne, A.: A refined analysis of the influence of the carbon nanotube distribution on the macroscopic stiffness of composites. Comp. Mater. Sci. 77(5), 189–193 (2013)CrossRefGoogle Scholar
  76. Makvandi, R., Öchsner, A.: On a numerical strategy to simulate nanotube-reinforced composite materials. Mat.-wiss. u. Werkstofftech 45(5), 429–35 (2014)Google Scholar
  77. Mavalizadeh, S.M., Rahmandoust, M., Öchsner, A.: Numerical investigation of the overall stiffness of carbon nanotubebased composite materials. J. Nano Res.-SW 13, 47–59 (2011)CrossRefGoogle Scholar
  78. McCarthy, B., et al.: A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 106(9), 2210–2216 (2002)CrossRefGoogle Scholar
  79. Moisala, A., Li, Q., Kinloch, I.A., Windle, A.H.: Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 66, 1285–1288 (2006)CrossRefGoogle Scholar
  80. Mora, R.J., Vilatela, J.J., Windle, A.H.: Properties of composites of carbon nanotube fibers. Compos. Sci. Technol. 69, 1558–1563 (2009)CrossRefGoogle Scholar
  81. Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRefGoogle Scholar
  82. Mura, T.: Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff Publisher, Leiden (1987)CrossRefGoogle Scholar
  83. Nan, C.W., Shi, Z., Lin, Y.: A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375, 666–669 (2003)CrossRefGoogle Scholar
  84. Nobel-Prize: The Nobel Prize in Physics. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/ (2010)
  85. O’Connell, M.J., et al.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3), 265–271 (2001)CrossRefGoogle Scholar
  86. Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent continuum modeling of nano-structured materials. NASA TM. 62, 1869–1880 (2001)Google Scholar
  87. Pipes, R.B., Hubert, P.: Helical carbon nanotube arrays: mechanical properties. Compos. Sci. Technol. 62, 419–428 (2002)CrossRefGoogle Scholar
  88. Ramamurthy, P.C., et al.: Polyaniline/single-walled carbon nanotube composite electronic devices. Solid State Electron. 48(10), 2019–2024 (2004)CrossRefGoogle Scholar
  89. Ren, Y., Li, F., Cheng, H.-M., Liao, K.: Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced-epoxy composite. Carbon 41, 2159–2179 (2003)CrossRefGoogle Scholar
  90. Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X.: Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19), 5643–5654 (2003)CrossRefGoogle Scholar
  91. Rul, S., et al.: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater. 52, 1061–1067 (2004)CrossRefGoogle Scholar
  92. Samal, S.S., Bal, S.: Carbon nanotube reinforced ceramic matrix composites—a review. J. Miner. Mater. Charact. Eng. 7(4), 355–370 (2008)Google Scholar
  93. Sandler, J.K.W., et al.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRefGoogle Scholar
  94. Seo, M.-K., Park, S.-J.: Electrical resistivity and rheologycal behavior of carbon nanotubes-filled polypropylene composites. Chem. Phys. Lett. 395, 44–48 (2004)CrossRefGoogle Scholar
  95. Shokrieh, M.M., Rafiee, R.: Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based compositesInvestigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos. Struct. 92, 2415–2420 (2010)CrossRefGoogle Scholar
  96. Sie, C.T.: Carbon nanotube reinforced composites: metal and ceramic matrices. Wiley, Weinheim (2009)Google Scholar
  97. Singh, I.V., Tanaka, M., Endo, M.: Effect of interface on the thermal conductivity of carbon nanotube composites. Int. J. Therm. Sci. 46, 842–847 (2007)CrossRefGoogle Scholar
  98. Sinnott, S.B., Ni, B., Mikulski, P.T., Harrison, J.A.: Compression of filled carbon nanotubes: predictions from molecular dynamics simulations. In: Ninth Foresight Conference on Molecular Nanotechnology Proceeding, (2004)Google Scholar
  99. Song, Y.S., Youn, J.R.: Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon 44, 710–717 (2006)CrossRefGoogle Scholar
  100. Spanggaard, H., Krebs, F.C.: A brief history of the development of organic and polymeric photovoltaics. Sol. Energ. Mat. Sol. C. 83, 125–146 (2004)CrossRefGoogle Scholar
  101. Sridhar, I., Narayana, K.R.: Processing and characterizations of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44, 1750–1756 (2009)CrossRefGoogle Scholar
  102. Star, A., Lu, Y., Bradley, K., Gruner, G.: Nanotube optoelectronic memory devices. Nano Lett. 4(9), 1587–1591 (2004)CrossRefGoogle Scholar
  103. Tandon, G.P., Weng, G.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 72(2), 111–132 (1986)CrossRefGoogle Scholar
  104. Tang, W., Santare, M.H., Advani, S.G.: Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41, 2779–2785 (2003)CrossRefGoogle Scholar
  105. Tucker, C.L., Liang, E.: Stiffness predictions for unidirectional shortfiber composites: review and evaluation. Compos. Sci. Technol. 59, 655–671 (1999)CrossRefGoogle Scholar
  106. Uddin, S.M., et al.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Tehnol. 70, 2253–2257 (2010)CrossRefGoogle Scholar
  107. University-of-York: Essential Chemical Industry. http://www.essentialchemicalindustry.org/materials-and-applications/composites.html (2013)
  108. Wagner, H., Lourie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998)CrossRefGoogle Scholar
  109. Wang, C.M., Zhang, Y.Y., Xiang, Y., Reddy, J.N.: Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804-1–030804-18 (2010)Google Scholar
  110. Wei, C.: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2(6), 647–650 (2002)CrossRefGoogle Scholar
  111. Weisenberger, M.C., et al.: Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 3(6), 535–539 (2003)CrossRefGoogle Scholar
  112. Xie, S., et al.: Mechanical and physical properties of carbon nanotube. J. Phys. Chem. Solids 61, 1153–1158 (2000)CrossRefGoogle Scholar
  113. Xie, X.L., Mai, Y.W., Zhou, X.P.: Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R. 49, 89–112 (2005)CrossRefGoogle Scholar
  114. Zhong, R., Cong, H., Hou, P.: Fabrication of nano-Al based composites reinforced by single walled carbon nanotubes. Carbon 41, 848–851 (2002)CrossRefGoogle Scholar
  115. Zhu, L., Nart, K.A.: Numerical simulation of the effect of nanotube orientation on tensile modulus of carbon-nanotube-reinforced polymer composites. Polym. Int. 53, 1461–1466 (2004)CrossRefGoogle Scholar
  116. Zoo, Y.S., An, J.W., Lim, D.P., Lim, D.S.: Effect of carbon nanotubes addition on tribological behavior of UHMWPE. Tribol. Lett. 16, 305–309 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Griffith School of EngineeringGriffith University (Gold Coast Campus)SouthportAustralia
  2. 2.Protein Research CenterShahid Beheshti University, G.C.TehranIran
  3. 3.Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations