Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 348))

  • 7233 Accesses

Abstract

The Poincaré, logarithmic Sobolev and Sobolev inequalities capture different features of the associated semigroup or the invariant measure, in terms of convergence to equilibrium, estimates on the heat kernels or tail behaviors of the invariant measure. This chapter investigates intermediate or more general families of functional inequalities which are suited to a wide variety of regimes as well as to more precise, or different, features. The study is concerned with three main examples, entropy-energy, generalized Nash and weak Poincaré inequalities. The first part of the chapter describes the family of functional entropy–energy inequalities well-suited to heat kernel bounds by means of the method developed for hypercontractivity under logarithmic Sobolev inequalities. Off-diagonal heat kernel estimates may be achieved in the same way. Further sections in this chapter investigate generalized Nash inequalities on the basis of the example of the classical Nash inequality in Euclidean space, as well as weighted Nash inequalities, with a focus on non-uniform heat kernel bounds and tail inequalities. Weak Poincaré inequalities are studied as the main minimal tool to tighten families of standard functional inequalities. Weak Poincaré inequalities may be further studied in their own from the viewpoint of heat kernel bounds and tail estimates. Further related families of functional inequalities of interest and illustrative examples complete the exposition of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. S. Aida, Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158(1), 152–185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory, Saint-Flour, 1992. Lecture Notes in Math., vol. 1581 (Springer, Berlin, 1994), pp. 1–114

    Chapter  Google Scholar 

  3. D. Bakry, F. Bolley, I. Gentil, P. Maheux, Weighed Nash inequalities. Rev. Mat. Iberoam. 28(3), 879–906 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bakry, D. Concordet, M. Ledoux, Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM Probab. Stat. 1, 391–407 (1995/97) (electronic)

    Article  MathSciNet  Google Scholar 

  5. D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités, XIX, 1983/1984. Lecture Notes in Math., vol. 1123 (Springer, Berlin, 1985), pp. 177–206

    Google Scholar 

  6. F. Barthe, P. Cattiaux, C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22(3), 993–1067 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Barthe, A.V. Kolesnikov, Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18(4), 921–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105(2), 397–400 (1989)

    MATH  MathSciNet  Google Scholar 

  9. L. Bertini, B. Zegarliński, Coercive inequalities for Gibbs measures. J. Funct. Anal. 162(2), 257–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. M.-F. Bidaut-Véron, L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106(3), 489–539 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. S.G. Bobkov, M. Ledoux, Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107(3), 383–400 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. S.G. Bobkov, B. Zegarliński, Entropy bounds and isoperimetry. Mem. Am. Math. Soc. 176, 829 (2005)

    Google Scholar 

  13. F. Bolley, I. Gentil, Phi-entropy inequalities for diffusion semigroups. J. Math. Pures Appl. 93(5), 449–473 (2010)

    MATH  MathSciNet  Google Scholar 

  14. D. Chafaï, Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ. 44(2), 325–363 (2004)

    MathSciNet  Google Scholar 

  15. T. Coulhon, Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141(2), 510–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. E.B. Davies, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  17. I. Gentil, From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality. Ann. Fac. Sci. Toulouse 17(2), 291–308 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Gentil, A. Guillin, L. Miclo, Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Relat. Fields 133(3), 409–436 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Gentil, A. Guillin, L. Miclo, Modified logarithmic Sobolev inequalities in null curvature. Rev. Mat. Iberoam. 23(1), 235–258 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Grigor’yan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47 (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  21. B. Helffer, Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics. Series in Partial Differential Equations and Applications, vol. 1 (World Scientific, River Edge, 2002)

    MATH  Google Scholar 

  22. J. Inglis, M. Neklyudov, B. Zegarliński, Ergodicity for infinite particle systems with locally conserved quantities. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(1), 1250005 (2012), 28

    Article  MathSciNet  Google Scholar 

  23. A. Joulin, N. Privault, Functional inequalities for discrete gradients and application to the geometric distribution. ESAIM Probab. Stat. 8, 87–101 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Kavian, G. Kerkyacharian, B. Roynette, Quelques remarques sur l’ultracontractivité. J. Funct. Anal. 111(1), 155–196 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Latała, K. Oleszkiewicz, Between Sobolev and Poincaré, in Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745 (Springer, Berlin, 2000), pp. 147–168

    Chapter  Google Scholar 

  26. E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Mathieu, Quand l’inégalité log-Sobolev implique l’inégalité de trou spectral, in Séminaire de Probabilités, XXXII. Lecture Notes in Math., vol. 1686 (Springer, Berlin, 1998), pp. 30–35

    Chapter  Google Scholar 

  28. C. Roberto, B. Zegarliński, Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243(1), 28–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Röckner, F.-Y. Wang, Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups. J. Funct. Anal. 185(2), 564–603 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Rosen, Sobolev inequalities for weight spaces and supercontractivity. Trans. Am. Math. Soc. 222, 367–376 (1976)

    Article  MATH  Google Scholar 

  31. M. Tomisaki, Comparison theorems on Dirichlet norms and their applications. Forum Math. 2(3), 277–295 (1990)

    MATH  MathSciNet  Google Scholar 

  32. F.-Y. Wang, Functional inequalities and spectrum estimates: the infinite measure case. J. Funct. Anal. 194(2), 288–310 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. F.-Y. Wang, Functional Inequalities, Markov Processes, and Spectral Theory (Science Press, Beijing, 2004)

    Google Scholar 

  34. F. Wang, Y. Zhang, F-Sobolev inequality for general symmetric forms. Northeast. Math. J. 19(2), 133–138 (2003)

    MATH  MathSciNet  Google Scholar 

  35. L. Wu, A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Relat. Fields 118(3), 427–438 (2000)

    Article  MATH  Google Scholar 

  36. B. Zegarliński, Entropy bounds for Gibbs measures with non-Gaussian tails. J. Funct. Anal. 187(2), 368–395 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakry, D., Gentil, I., Ledoux, M. (2014). Generalized Functional Inequalities. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-319-00227-9_7

Download citation

Publish with us

Policies and ethics