Skip to main content

Iron Sulphides and Surface Heating: Further Engineering Considerations for the Dublin Area

  • Chapter
  • First Online:
Implications of Pyrite Oxidation for Engineering Works

Abstract

The problem created by the oxidation of pyrrhotite in a number of countries is reviewed and it is concluded that pyrrhotite is more common in Ireland than is generally appreciated. Research into the variable size/structure of pyrite/pyrrhotite framboids and the fractured nature of some of the microcrystals is presented. It is proposed that this may result from tectonic/fault movement. It is likely that the emanation of ground-sourced heat affects the rate of oxidation of iron sulphides and the consequential distress, which may therefore vary within an estate, even if the same aggregate is used beneath the houses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreham, A. Y. (2007). Reactivity of alum and black shale in the Oslo Region. MSc Thesis, University of Oslo, Norway, p. 95.

    Google Scholar 

  • Aldwell, C. R. (1997). Low-temperature geothermal energy in Ireland. Seminar on geothermal energy from public water supply sources. Tramore, Ireland.

    Google Scholar 

  • Aldwell, C. R., & Burdon, D. J. (1978). Proposed geothermal project for Ireland. Geological Survey of Ireland Internal Report.

    Google Scholar 

  • Aldwell, C. R., & Burdon, D.J. (1980). Hydrogeothermal conditions in Ireland. 26 International Geology Congress, Paris. Fossil Fuels Sec. 14.2; 14.0068:21.

    Google Scholar 

  • Aleksandrov, I. V., & Kamneva, A. I. (1976). Derivatographic investigation of the organomineral compounds of brown coals. Solid Fuel Chemistry, 10(2), 76–79.

    Google Scholar 

  • Anon. (1997). The “Mundic” Problem—A guidance note (2nd ed.). London: Royal Institution of Chartered Surveyors.

    Google Scholar 

  • Araujo, G. S., Chinchón, S., & Aguado, A. (2008). Evaluation of the behavior of concrete gravity dams suffering from internal sulphate attack. Ibracon Materials and Structures Journal, 1(1), 84–112.

    Google Scholar 

  • Aubourg, C., Klootwijk, C., & Korsch, R. J. (2004). Magnetic fabric constraints on oroclinal bending of the Texas and Coffs Harbour blocks: New England Orogen, eastern Australia. In: A. M. Martin-Hernandez, F. Luneburg & C. M. Aubourg and M. Jackson (Eds.). Magnetic fabric: Methods and applications. Geological Society Special Publications. Geological Society (238, pp. 421–445). London.

    Google Scholar 

  • Barclay, W. J., Taylor, K., & Thomas, L. P. (1988). Geology of the South Wales coalfield, Part V, the country around Merthyr Tydfil. Memoir for 1:50,000 Geological Sheet 231. HMSO, London.

    Google Scholar 

  • Bastiansen, R., Moum, J., & Rosenqvist, I. Th. (1957). Contribution to highlight certain construction problems associated with Alum Shale in Oslo (p. 69). Oslo: Norwegian Geotechnical Institute, Publication No. 22 (in Norwegian with English summary).

    Google Scholar 

  • Becker, M. (2009). The mineralogy and crystallography of pyrrhotite. Ph.D. Thesis, University of Pretoria, Pretoria.

    Google Scholar 

  • Becker, M., Bradshaw, D., & de Villiers, J. (2011). The mineralogy of pyrrhotite from Sudbury CCN and Phoenix nickel ores and its effect on flotation performance. Canadian Metallurgical Quarterly, 50(1), 10–19.

    Article  Google Scholar 

  • Belzile, N., Chen, Y.-W., Cai, M.-F., & Li, Y. (2004). A review on pyrrhotite oxidation. Journal of Geochemical Exploration, 84, 65–76.

    Article  Google Scholar 

  • Bérard, J., Roux, R., & Durand, M. (1975). Performance of concrete containing a variety of black shale. Canadian Journal of Civil Engineering, 2(1), 58–65.

    Article  Google Scholar 

  • Bhatti, T. M., Bigham, J. M., Carlson, L., & Tuovinen, O. H. (1993). Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans. Applied Environmental Microbiology, 59(6), 1984–1990.

    Google Scholar 

  • Bott, M. H. P., Day, A. A., & Masson-Smith, D. (1958). The geological interpretation of gravity and magnetic surveys in Devon and Cornwall. Philosophical Transactions of the Royal Society 251(A), 161–191.

    Google Scholar 

  • British Standards Institute. (2008a). EN 13242:2002 + A1:2007. Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. London: BSI.

    Google Scholar 

  • British Standards Institute. (2008b). EN 12620:2002 + A1:2008. Aggregates for concrete. London: BSI.

    Google Scholar 

  • British Standards Institute. (2010). EN 1744-1:2009. Tests for chemical properties of aggregates. Part 1: Chemical analyses. London: BSI.

    Google Scholar 

  • Bromley, A., & Pettifer, K. (1997). Sulfide-related degradation of concrete in Southwest England (The Mundic problem). Building Research Establishment. BRE Laboratory Report 325.

    Google Scholar 

  • Butcher, D. A., & Rowson, N. A. (1995). Microwave pretreatment of coal prior to magnetic separation. Magnetic and Electrical Separation, 6, 87–97.

    Article  Google Scholar 

  • Cai, M.-F., Dang, Z., Chen, Y.-W., & Belzile, N. (2005). The passivation of pyrrhotite by surface coating. Chemosphere, 61, 659–667.

    Article  Google Scholar 

  • Casanova, I., Agullo, L., & Aguado, A. (1996). Aggregate expansivity due to sulphide oxidation—1. Reaction system and rate model. Cement and Concrete Research, 26(7), 993–998.

    Article  Google Scholar 

  • Chinchón, J. S., Lopez-Soler, A., Querol, X., & Vaquer, R. (1990). Determination of pyrrhotite occurring in aggregates by X-ray fluorescence. Cement and Concrete Research, 20, 394–397.

    Article  Google Scholar 

  • Chinchón, J. S., Ayora, C., Aguado, A., & Guirado, F. (1995). Influence of weathering of iron sulphides contained in aggregates on concrete durability. Cement and Concrete Research, 25(6), 1264–1272.

    Article  Google Scholar 

  • Chinchón-Payá, S., Aguado, A., and Chinchón, S. (2012). A comparative investigation of the degradation of pyrite and pyrrhotite under simulated laboratory conditions. Engineering Geology, 127, 75–80.

    Google Scholar 

  • Clayton, G., Haughey, N., Sevastopulo, G. D., & Burnett, R. D. (1989). Thermal maturation levels in the Devonian and Carboniferous rocks in Ireland. Special Publication of the Geological Survey of Ireland, p. 36.

    Google Scholar 

  • Coalition Proprio-Béton (CPB). (2012). Information Générale—Un drame qui se répète. [online]. Available: http://www.proprio-beton.qc.ca/.

  • Comité Technique Québécois D’étude Des Problèmes De Gonflement Associés à La Pyrite. (2001). Appraisal procedure for existing residential buildings. Procedure CTQ-M200, Version 2.0, June 4.

    Google Scholar 

  • CSA Group. (2004). Geothermal energy resource map of Ireland. Final report prepared for Sustainable Energy Ireland.

    Google Scholar 

  • Czerewko, M. A., Cripps, J. C., Duffell, C. G., & Reid, J. M. (2003). The distribution and evaluation of sulfur species in geological materials and manmade fills. Cement and Concrete Composites, 25, 1025–1034.

    Article  Google Scholar 

  • Davies, G. M. (1912). The mineral composition of the Arctic bed at Ponder’s End. Quarterly Journal of the Geological Society of London, 68, 243–249.

    Article  Google Scholar 

  • Davies, G., & Oberholster, R. E. (1988). Durability problems associated with clinker ash/cement bricks: Windhoek, Namibia. Quarterly Journal of Engineering Geology, 21, 361–369.

    Article  Google Scholar 

  • Dubey, C. S., Venkatachalam, K., Ratnam, M., & Shekhar, P. (2004). Causes of seepage water in drainage and grouting galleries of the Pandoh Dam, Central Himalaya. Bulletin of Engineering Geology and the Environment, 63, 19–23.

    Article  Google Scholar 

  • Duchesne, J., & Fournier, B. (2011). Petrography of concrete deteriorated by weathering of sulphide minerals. Proposed Paper for the 33rd international conference on cement microscopy, Omni San Francisco Hotel, San Francisco, California, U.S.A. April 17–20.

    Google Scholar 

  • Dunham, K. C. (1969). Geological map of the British Islands, including Ireland (5th ed.). London: BGS.

    Google Scholar 

  • Edmonds, E. A., Wright, J. E., Beer, K. E., Hawkes, J. R., Williams, M., Freshney, E. C., & Fenning P. J. (1968). Geology of the country around Okehampton. London: HMSO.

    Google Scholar 

  • Edmonds, E. A., McKeown, M. C., & Williams, M. (1969). British regional geology—South-West England. London: Institute of Geological Sciences, HMSO.

    Google Scholar 

  • EHE-08. (2008). Instrucción de Hormigón Estructural. Capitulo VI, Materiales. Real Decreto 1247/2008, de 18 de Julio.

    Google Scholar 

  • Fahy, E. (1975). The biology of a thermal spring at Enfield, Co. Meath, with some observations on other Irish thermal springs. Proceedings of the Royal Irish Academy 75(B), 111–123.

    Google Scholar 

  • Ferry, J. M. (1981). Petrology of graphitic sulphide-rich schists from south-central Maine: An example of desulfidation during prograde regional metamorphism. American Mineralogist, 66, 908–930.

    Google Scholar 

  • Fiskaa, O., Hansen, H., and Moum, J. (1971). Concrete in Alum Shale (p. 32). Oslo: Norwegian Geotechnical Institute. Publication No. 86. (in Norwegian with English summary).

    Google Scholar 

  • Fox, D., Robinson, C., & Zentilli, M. (1997). Pyrrhotite and associated sulphides and their relationship to acid rock drainage in the Halifax Formation, Meguma Group, Nova Scotia. Atlantic Geology, 33, 87–103.

    Google Scholar 

  • Fristrom, G., & Sallstrom, S. (1967). Control and maintenance of concrete structures in existing dams in Sweden. Proceedings of the 9th international conference on large dams, Istanbul (Vol. 3, pp. 383–401).

    Google Scholar 

  • Fuller, M. D. (1964). On the magnetic fabrics of certain rocks. The Journal of Geology, 72(3), 368–376.

    Article  Google Scholar 

  • Geological Survey of Ireland (GSI). (1995). Geology of Kildare-Wicklow. Sheet 16.

    Google Scholar 

  • Geological Survey of Ireland (GSI). (1999). Geology of Meath. Sheet 13.

    Google Scholar 

  • Georgopoulou, Z. J., Fytas, K., Soto, H., Evangelou, B. (1995). Pyrrhotite coating to prevent oxidation. Sudbury’95, Conference on mining and the environment, Sudbury, Ontario, May 28th–June 1st 1995.

    Google Scholar 

  • Goodhue, R., and Clayton, G. (2010). The application of a new thermal maturity indicator, the palynomorph darkness index (PDI). GSA Denver annual meeting (31 Oct–3 Nov).

    Google Scholar 

  • Gottesmann, B., & Wirth, R. (1997). Pyrrhotite inclusions in dark pigmented apatite from granitic rocks. European Journal of Mineralogy, 9, 491–500.

    Google Scholar 

  • Hagelia, P. (2011). Deterioration mechanisms and durability of sprayed concrete for rock support in tunnels. Norway: University of Oslo.

    Google Scholar 

  • Hagelia, P., & Sibbick, R. G. (2009). Thaumasite sulfate attack, popcorn calcite deposition and acid attack in concrete stored at the “Blindtarmen” test site Oslo, from 1952 to 1982. Materials Characterisation, 60, 686–699.

    Article  Google Scholar 

  • Hagerman, T., & Roosaar, H. (1955). Damages to concrete caused by sulphide minerals (Vol. 40(2), pp. 151–161). (English Summary). Betong, Stockholm.

    Google Scholar 

  • Hakkou, R., Benzaazoua, M., & Bussiere, B. (2008). Acid mine drainage at the abandoned Kettara mine (Morocco): 1 Environmental characterization. Mine Water Environment, 27, 145–159.

    Article  Google Scholar 

  • Hall, A. J. (1982). Gypsum as a precursor to pyrrhotite in metamorphic rocks. Mineralium Deposita, 17(3), 401–409.

    Article  Google Scholar 

  • Hammarstrom, J. M., & Smith, K. S. (2002). Geochemical and mineralogic characterization of solids and their effects on waters in metal-mining environments. In K. Foley (Eds.) Progress on geoenvironmental models for selected mineral deposit types. U.S. Geological Survey (2002), Robert R. Seal II, Nora, pp. 8–54.

    Google Scholar 

  • Hawkins, A. B. (2012). Sulphate heave: a model to explain the rapid rise of ground-bearing floor slabs. Bulletin of Engineering Geology and the Environment, 71(1), 113–117.

    Article  Google Scholar 

  • Hawkins, A. B. (2013). Engineering implications of the oxidation of pyrite: an overview, with particular reference to Ireland. In: A. B. Hawkins (Ed.), Implications of Pyrite Oxidation for Engineering Works, Switzerland: Springer International Publishers. (This volume).

    Google Scholar 

  • Hawkins, A. B., & Pinches, G. M. (1987). Sulphate analysis on black mudstones. Géotechnique 37(2), 191–196.

    Google Scholar 

  • Hitzman, M. W. (1999). Extensional faults that localize Irish syndiagenetic Zn-Pb deposits and their reactivation during Variscan compression. In: K. J. W. McCaffrey et al (Eds.) Fractures, fluid flow and mineralization. Geological Society Special Publication 155.

    Google Scholar 

  • Hobbs, D. W. (2003). Thaumasite sulfate attack in field and laboratory concretes: implications for specifications. Cement and Concrete Composites, 25, 1195–1202.

    Article  Google Scholar 

  • Horng, C. S., & Roberts, A. P. (2006). Authigenic or detrital origin of pyrrhotite in sediments? Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241, 750–762.

    Article  Google Scholar 

  • Jangdal, C. E. (1971). Swelling shale in the Ostersund area. National Swedish Research Report R35.

    Google Scholar 

  • Janzen, M. P., Nicholson, R. V., & Scharer, J. M. (2000). Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochimica et Cosmochimica Acta, 64, 1511–1522.

    Article  Google Scholar 

  • Jones, G. L. (1992). Irish Carboniferous conodonts record maturation levels and the influence of tectonism, igneous activity and mineralisation. Terra Nova, 4(2), 238–244.

    Article  Google Scholar 

  • Jones, R. C., Beer, K. E., & Tombs, J. M. C. (1987) Geochemical and geophysical investigations in Exmoor and the Brendon Hills. Mineral Reconnaissance Programme Report of the British Geological Survey, No 90.

    Google Scholar 

  • Jones, A. G., Muller, M. R., Daly, J. S., Allen, A., Goodman, R., Hunter Williams, N. H., Lee, M., Reay, D., Feely, M., Hanly, P., & Pasquali, R. (2011). Harnessing earth’s heat for energy in Ireland: the IRETHERM project. Irish Geological Association, Trinity College Dublin, 19th October.

    Google Scholar 

  • Kelly, W. C., & Zumberge, J. H. (1961). Weathering of a quartz diorite at Marble Point, McMurdo Sound, Antarctica. The Journal of Geology, 69(4), 433–446.

    Article  Google Scholar 

  • Lambert, I. B. (1973). Post-depositional availability of sulphur and metals and formation of secondary textures and structures in stratiform sedimentary sulphide deposits. Journal of Geological Society of Australia, 20, 205–215.

    Article  Google Scholar 

  • Lehmann, M. N., Kaur, P., Pennifold, R. M., & Dunn, J. G. (2000). A comparative study of the dissolution of hexagonal and monoclinic pyrrhotites in cyanide solution. Hydrometallurgy, 55, 255–273.

    Article  Google Scholar 

  • Leveridge, B. E., Holder, M. T., Goode, A. J. J., Scrivener, R. C., Jones, N. S., & Merriman, R. J. (2002). Geology of the Plymouth and south-east Cornwall area. Sheet 348. HMSO, London.

    Google Scholar 

  • Long, M., & Menkiti, C. O. (2007). Geotechnical properties of Dublin boulder clay. Géotechnique, 57(7), 595–611.

    Article  Google Scholar 

  • Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40, 159–180.

    Article  Google Scholar 

  • Macleod, G., Hall, A. J., & Fallick, A. E. (1990). An applied mineralogical investigation of concrete degradation in a major concrete road bridge. Mineralogical Magazine, 54, 637–644.

    Article  Google Scholar 

  • Maher, M. J. (2013). The Canadian pyrite experience and comparisons with the Irish problems. In: A. B. Hawkins (Ed.), Implications of Pyrite Oxidation for Engineering Works, Switzerland: Springer International Publishers. (This volume).

    Google Scholar 

  • Martna, J. (1970). Engineering problems in rocks containing pyrrhotite. Large permanent underground openings. In T. L. Brekke, F. A. Jorstad (Eds.), Symposium on large permanent underground openings, Oslo, Norway (pp. 23–25). Sept 1969.

    Google Scholar 

  • McConnell, B., & Kennan, P. (2002). Petrology and geochemistry of the Drogheda granite. Irish Journal of Earth Sciences, 20, 53–60.

    Google Scholar 

  • McConnell, B., Philcox, M., & Geraghty, M. (2001). Geology of Meath: A geological description to accompany the Bedrock Geology 1:100,000 scale map series, Sheet 13, Meath. With contributions from J. Morris, W. Cox, G. Wright & R. Meehan (Eds.), Geological survey of Ireland (pp. 1−78).

    Google Scholar 

  • Moum, J., & Rosenqvist, I. T. (1959). Sulphate attack on concrete in the Oslo region. Journal of the American Concrete Institution, 56, 257–264.

    Google Scholar 

  • Nicholson, R. V., & Scharer, J. M. (1993). Laboratory studies of pyrrhotite oxidation kinetics. In Environmental geochemistry of sulfide oxidation. ACS Symposium series (Vol. 550, pp. 14–30).

    Google Scholar 

  • O’Connell, S., & Cassidy, S. F. (2003). Recent large scale ground-source heat pump installations in Ireland. International geothermal conference, Reykjavik, Sept 2003.

    Google Scholar 

  • Oberholster, R. E., Van Aardt, J. H. P., & Brandt, M. P. (1983). Durability of cementitious systems. In P. Barnes (Ed.), Structure and performance of cements (pp. 365–413). New York: Applied Science Publishers.

    Google Scholar 

  • Ohfuji, H., Boyle, A. P., Prior, D. J., & Rickard, D. (2005). Structure of framboidal pyrite: An electron backscatter diffraction study. American Mineralogist, 90, 1693–1704.

    Article  Google Scholar 

  • Oliveira, I., Chinchón-Paya, S., Aguado, A., & Chinchón, S. (2011). Pyrrhotite oxidation kinetics: host rock influence and the effect of aggregate size on a concrete dam. Paper submitted to the 13th international congress on the chemistry of cement. Madrid, 3–8th July 2011.

    Google Scholar 

  • Oliveira, I., Cavalaro, S. H. P., & Aguado, A. (2013). New unreacted-core model to predict pyrrhotite oxidation in concrete dams. Journal of Materials in Civil Engineering, 25, 372–381.

    Google Scholar 

  • Pitcairn, I. K., Olivo, G. R., Teagle, D. A. H., & Craw, D. (2010). Sulfide evolution during prograde metamorphism of the Otago and Alpine Schists, New Zealand. The Canadian Mineralogist., 48, 1267–1295.

    Article  Google Scholar 

  • Pugh, C. E., Hossner, L. R., & Dixon, J. B. (1981). Pyrite and marcasite surface area as influenced by morphology and particle diameter. Soil Science Society of America Journal, 45, 979–982.

    Article  Google Scholar 

  • Pyrite Panel (2012). Report of the Pyrite Panel. PDF [online]. Available: http://www.environ.ie/en/PublicationsDocuments/FileDownLoad,30735,en.pdf.

  • Quigley, R. M., & Vogan, R. W. (1970). Black shale heaving at Ottawa, Canada. Canadian Geotechnical Journal, 7, 106–112.

    Article  Google Scholar 

  • Rao, C. K., Jones, A. G., & Moorkamp, M. (2007). The geometry of the Iapetus Suture Zone in central Ireland deduced from a magnetotelluric study. Physics of the Earth and Planetary Interiors, 161, 134–141.

    Article  Google Scholar 

  • Reid, J. M., Czerewko, M., & Cripps, J. C. (2005). Sulfate specification for structural backfills. TRL Report 447. Transport Research Laboratory.

    Google Scholar 

  • Roberts, A. P., & Turner, G. M. (1993). Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115, 257–273.

    Article  Google Scholar 

  • Schmidt, T., Leemann, A., Gallucci, E., & Scrivener, K. (2011). Physical and microstructural aspects of iron sulphide degradation in concrete. Cement and Concrete Research, 41(3), 263–269.

    Article  Google Scholar 

  • Seal, R., & Hammarstrom, J. (2003). Geoenvironmental models of mineral deposits: Examples from massive sulphide and gold deposits. In Environmental aspects of mine wastes. Short course series. Mineralogical Association of Canada, Vancouver (Vol. 31, Chap. 2, pp. 11–50).

    Google Scholar 

  • Shi, C. D., Zhu, R. X., Suchy, V., Zeman, A., Guo, B., & Pan, Y. X. (2001). Identification and origins of iron sulfides in Czech loess. Geophysical Research Letters, 28(20), 3903–3906.

    Article  Google Scholar 

  • Simpson, B., & Stuart, A. (1934). The petrology of the Culm sandstones of North West Devon and of the Dune Sands of Westward Ho! Geological Magazine, 70(10), 446–458.

    Article  Google Scholar 

  • S. R. 21. (2004+ A1:2007). Guidance on the use of l.S. EN 13242:2002 -Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. NSAI, Ireland.

    Google Scholar 

  • Strogen, P., Jones, G. L., & Somerville, I. D. (1990). Stratigraphy and sedimentology of lower Carboniferous (Dinantian) boreholes from West Co. Meath, Ireland. Geological Journal, 25, 103–137.

    Article  Google Scholar 

  • Tagnit-Hamou, A., Saric-Coric, M., & Rivard, P. (2005). Internal deterioration of concrete by the oxidation of pyrrhotitic aggregates. Cement and Concrete Research, 35(1), 99–107.

    Article  Google Scholar 

  • Truche, L., Berger, G., Destrigneville, C., Guillaume, D., & Giffaut, E. (2010). Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: Implications for nuclear waste disposal. Geochimica et Cosmochimica Acta, 74, 2894–2914.

    Article  Google Scholar 

  • Tuttle, M. L., Goldhaber, M. B., & Williamson, D. L. (1986). An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta, 33(12), 953–961.

    Article  Google Scholar 

  • Vaughan, D. J. (2011). Sulphides, In J. F. W. Bowles, R. A. Howie, D. J. Vaughan & J. Zussman (Eds.), Rock-forming minerals: Non-silicates oxides, hydroxides and sulphides (2nd ed., Vol. 5A). The Geological Society, London.

    Google Scholar 

  • Vazquez, E., & Toral, T. (1984). Effect of iron sulphides in aggregates used for concrete in the Maresme area (Barcelona). Bulletin of the International Association of Engineering Geology, 30, 297–300. (In French).

    Article  Google Scholar 

  • Vidal, M. (1962). La Pirrotina en el terreno, peligro para los hormigones. Bol. Serr. Geol., 11, 11–16.

    Google Scholar 

  • Xie, S., Cheng, Q., Zhang, S., & Huang, K. (2010). Assessing microstructures of pyrrhotites in basalts by multifractal analysis. Nonlinear Processes in Geophysics, 17, 319–327.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to James Lombard of Ground Investigations Ireland for assistance in obtaining borehole samples of the Carboniferous strata in the Dublin area. Thanks are also offered to Stuart Kearns at the University of Bristol for his help and guidance with SEM and electron microprobe work. The authors also extend thanks to Marcus Hawkins for the production of drawings and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brian Hawkins .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawkins, A.B., St John, T.W. (2014). Iron Sulphides and Surface Heating: Further Engineering Considerations for the Dublin Area. In: Implications of Pyrite Oxidation for Engineering Works. Springer, Cham. https://doi.org/10.1007/978-3-319-00221-7_9

Download citation

Publish with us

Policies and ethics