Advertisement

Non-extremal Black-Hole Solutions of \(\mathcal{N }=2,\;d=4,\;5\) Supergravity

  • Tomás Ortín
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 144)

Abstract

Black holes have been intensely studied in the framework of string theory for the last 20 years. They are described by classical solutions of the supergravity theories that describe effectively the low-energy dynamics of different string compactifications. Being solutions of theories with local supersymmetry one can distinguish among them the particular class of those that preserve some unbroken supersymmetries (called supersymmetric or, less precisely, BPS).

Notes

Acknowledgments

The author would like to thank his collaborators in the work reviewed here: P. Galli, P. Meessen, J. Perz and C. S. Shahbazi, and the organizers of the BOSS2011 school and workshop. This work has been supported in part by the Spanish Ministry of Science and Education grant FPA2009-07692, the Comunidad de Madrid grant HEPHACOS S2009ESP-1473 and the Spanish Consolider-Ingenio 2010 program CPAN CSD2007-00042. The author wishes to thank M. M. Fernández for her permanent support.

References

  1. 1.
    A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B379, 99–104 (1996). [arXiv: hep-th/9601029]Google Scholar
  2. 2.
    S. Ferrara, R. Kallosh, A. Strominger, \({\rm N}=2\) extremal black holes. Phys. Rev. D52, 5412–5416 (1995). [arXiv: hep-th/9508072]Google Scholar
  3. 3.
    A. Strominger, Macroscopic entropy of \({\rm N}=2\) extremal black holes. Phys. Lett. B383, 39–43 (1996). [arXiv: hep-th/9602111]Google Scholar
  4. 4.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514–1524 (1996). [arXiv: hep-th/9602136]Google Scholar
  5. 5.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525–1534 (1996). [arXiv: hep-th/9603090]Google Scholar
  6. 6.
    K. Behrndt, D. Lüst, W.A. Sabra, Stationary solutions of \({\rm N}=2\) supergravity. Nucl. Phys. B510, 264–288 (1998). [arXiv: hep-th/9705169]Google Scholar
  7. 7.
    G.L. Cardoso, B. de Wit, J. Käppeli, T. Mohaupt, Stationary BPS solutions in \({\rm N}=2\) supergravity with R**2 interactions. JHEP 0012, 019 (2000). [arXiv: hep-th/0009234]Google Scholar
  8. 8.
    F. Denef, Supergravity flows and D-brane stability. JHEP 0008, 050 (2000). [arXiv: hep-th/0005049]MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P. Meessen, T. Ortín, The supersymmetric configurations of \({\rm N}=2\), \({\rm D}=4\) supergravity coupled to vector supermultiplets. Nucl. Phys. B749, 291–324 (2006). [arXiv: hep-th/0603099]Google Scholar
  10. 10.
    T. Mohaupt, Black hole entropy, special geometry and strings. Fortsch. Phys. 49, 3 (2001). [arXiv: hep-th/0007195]Google Scholar
  11. 11.
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis, H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quant. Grav. 20, 4587 (2003). [arXiv: hep-th/0209114]MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    J.P. Gauntlett, J.B. Gutowski, General concentric black rings. Phys. Rev. D 71, 045002 (2005). [arXiv: hep-th/0408122]MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    P. Meessen, T. Ortín, S. Vaulà, All the timelike supersymmetric solutions of all ungauged \({\rm d}=4\) supergravities. JHEP 1011, 072 (2010). [arXiv:1006.0239 [hep-th]]Google Scholar
  14. 14.
    M. Hübscher, P. Meessen, T. Ortín, S. Vaulà, Supersymmetric \({\rm N}=2\) Einstein-Yang-Mills monopoles and covariant attractors. Phys. Rev. D 78, 065031 (2008). [arXiv:0712.1530]Google Scholar
  15. 15.
    P. Meessen, Supersymmetric coloured/hairy black holes. Phys. Lett. B 665, 388 (2008). [arXiv:0803.0684 [hep-th]]Google Scholar
  16. 16.
    M. Hübscher, P. Meessen, T. Ortín, S. Vaulà, \({\rm N}=2\) Einstein-Yang-Mills’s BPS solutions. JHEP 0809, 099 (2008). [arXiv:0806.1477]Google Scholar
  17. 17.
    T. Mohaupt, K. Waite, Instantons, black holes and harmonic functions. JHEP 0910, 058 (2009). [arXiv:0906.3451]Google Scholar
  18. 18.
    T. Mohaupt, O. Vaughan, Non-extremal black holes, harmonic functions, and attractor equations, class. Quant. Grav. 27, 235008 (2010). [arXiv:1006.3439 [hep-th]]Google Scholar
  19. 19.
    P. Galli, T. Ortín, J. Perz, C.S. Shahbazi, Non-extremal black holes of \({\rm N}=2\), \({\rm d}=4\) supergravity. JHEP 1107, 041 (2011). [arXiv:1105.3311]Google Scholar
  20. 20.
    P. Meessen, T. Ortín, Non-extremal black holes of \({\rm N}=2\), \({\rm d}=5\) supergravity. Phys. Lett. B707, 178–183 (2012). [arXiv:1107.5454]Google Scholar
  21. 21.
    T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black hole solutions. [arXiv:1112.2876]Google Scholar
  22. 22.
    P. Meessen, T. Ortín, J. Perz and C.S. Shahbazi, H-FGK-formalism for black-hole solutions of \({\rm N}=2\), \({\rm d}=4\) and \({\rm d}=5\) supergravity, Phys. Lett. B709, 260 (2012). [arXiv:1112.3332]Google Scholar
  23. 23.
    A. de Antonio Martín, T. Ortín, C.S. Shahbazi, The FGK formalism for black p-branes in d dimensions. JHEP 1205, 045 (2012). [arXiv:1203.0260 [hep-th]]Google Scholar
  24. 24.
    P. Meessen, T. Ortín, J. Perz, C.S. Shahbazi, Black holes and black strings of \({\rm N}=2\), \({\rm d}=5\) supergravity in the H-FGK formalism. [arXiv:1204.0507 [hep-th]]Google Scholar
  25. 25.
    P. Galli, T. Ortín, J. Perz, C. S. Shahbazi, in preparationGoogle Scholar
  26. 26.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75–93 (1997). [arXiv: hep-th/ 9702103]Google Scholar
  27. 27.
    B. Janssen, P. Smyth, T. Van Riet, B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions. JHEP 0804, 007 (2008). [arXiv:0712.2808 [hep-th]]Google Scholar
  28. 28.
    G.T. Horowitz, A. Strominger, Black strings and P-branes. Nucl. Phys. B 360, 197 (1991)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    T. Ortín, Gravity and Strings (Cambridge University Press, Cambridge Unversity, 2004)zbMATHCrossRefGoogle Scholar
  30. 30.
    G.W. Gibbons, R. Kallosh, B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992 (1996). [arXiv: hep-th/ 9607108]ADSCrossRefGoogle Scholar
  31. 31.
    M. Cvetič, G. W. Gibbons, C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys. Rev. Lett. 106, 121301 (2011). [arXiv:1011.0008]Google Scholar
  32. 32.
    M. Cvetič, D. Youm, Entropy of nonextreme charged rotating black holes in string theory. Phys. Rev. D54, 2612 (1996). [arXiv: hep-th/ 9603147]ADSGoogle Scholar
  33. 33.
    F. Larsen, A String model of black hole microstates. Phys. Rev. D56, 1005 (1997). [arXiv: hep-th/ 9702153]ADSGoogle Scholar
  34. 34.
    M. Cvetič, F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons. Phys. Rev. D56, 4994 (1997). [arXiv: hep-th/ 9705192]ADSGoogle Scholar
  35. 35.
    M. Cvetič, F. Larsen, Grey body factors for rotating black holes in four-dimensions. Nucl. Phys. B506, 107 (1997). [arXiv: hep-th/ 9706071]ADSCrossRefGoogle Scholar
  36. 36.
    M. Cvetič, F. Larsen, Greybody factors and charges in Kerr/CFT. JHEP 0909, 088 (2009). [arXiv:0908.1136]Google Scholar
  37. 37.
    A. Castro, M.J. Rodríguez, Universal properties and the first law of black hole inner mechanics. [arXiv:1204.1284]Google Scholar
  38. 38.
    M. Gunaydin, G. Sierra, P.K. Townsend, The Geometry of N\(\,=\,\)2 Maxwell-Einstein Supergravity and Jordan Algebras. Nucl. Phys. B242, 244 (1984)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B400, 463–524 (1993). [arXiv: hep-th/ 9210068]Google Scholar
  40. 40.
    J. Bellorín, P. Meessen, T. Ortín, All the supersymmetric solutions of \({\rm N}=1\), \({\rm d}=5\) ungauged supergravity. JHEP 0701, 020 (2007). [arXiv: hep-th/ 0610196]ADSCrossRefGoogle Scholar
  41. 41.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N\(\,=\,\)2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015 (2004). [arXiv: hep-th/ 0403045]ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Magri, N\(\,=\,\)2 supergravity and N\(\,=\,\)2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). [arXiv: hep-th/ 9605032]MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    A. Van Proeyen, \({\rm N}=2\) supergravity in \({\rm d}=4, 5, 6\) and its matter couplings. Lectures given at the Institut Henri Poincaré, Paris, November 2000Google Scholar
  44. 44.
    B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged \({\rm N}=2\) supergravity—Yang-Mills models. Nucl. Phys. B 245, 89 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    B. de Wit, P.G. Lauwers, A. Van Proeyen, Lagrangians Of \({\rm N}=2\) supergravity—matter systems. Nucl. Phys. B 255, 569 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    K.P. Tod, All metrics admitting supercovariantly constant spinors. Phys. Lett. B121, 241–244 (1983)MathSciNetADSGoogle Scholar
  47. 47.
    J.P. Gauntlett, S. Pakis, The geometry of \({\rm D}=11\) killing spinors. JHEP 0304, 039 (2003). [arXiv: hep-th/ 0212008]Google Scholar
  48. 48.
    J. Bellorín, T. Ortín, Characterization of all the supersymmetric solutions of gauged \({\rm N}=1\), \({\rm d}=5\) supergravity. JHEP 0708, 096 (2007). [arXiv:0705.2567]Google Scholar
  49. 49.
    J. Bellorín, Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings. Class. Quant. Grav. 26, 195012 (2009). [arXiv:0810.0527]Google Scholar
  50. 50.
    A.H. Chamseddine, W.A. Sabra, Calabi-Yau black holes and enhancement of supersymmetry in five-dimensions. Phys. Lett. B460, 63 (1999). [arXiv: hep-th/ 9903046]MathSciNetADSGoogle Scholar
  51. 51.
    G.W. Gibbons, C.M. Hull, A bogomolny bound For general relativity and solitons In \({\rm N}=2\) supergravity. Phys. Lett. B 109, 190 (1982)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    M.M. Caldarelli, D. Klemm, All supersymmetric solutions of \({\rm N}=2\), \({\rm D}=4\) gauged supergravity. JHEP 0309, 019 (2003). [arXiv: hep-th/ 0307022]MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    M. Hübscher, P. Meessen, T. Ortín, Nucl. Phys. B759, 228–248 (2006). [arXiv: hep-th/ 0606281]Google Scholar
  54. 54.
    P. Meessen, T. Ortín, Supersymmetric solutions to gauged \({\rm N}=2\) \({\rm d}=4\) sugra: the full timelike shebang. Nucl. Phys. B 863, 65 (2012). [arXiv:1204.0493 [hep-th]]Google Scholar
  55. 55.
    S. L. Cacciatori, D. Klemm, Supersymmetric AdS(4) black holes and attractors. JHEP 1001, 085 (2010). [arXiv:0911.4926 [hep-th]]Google Scholar
  56. 56.
    J. Bellorín, P. Meessen, T. Ortín Supersymmetry, attractors and cosmic censorship. Nucl. Phys. B762, 229–255 (2007). [arXiv: hep-th/ 0606201]Google Scholar
  57. 57.
    A. Ceresole, R. D’Auria, S. Ferrara, The symplectic structure of \({\rm N}=2\) supergravity and its central extension. Nucl. Phys. Proc. Suppl. 46, 67 (1996). [arXiv: hep-th/ 9509160]MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    P. Galli, K. Goldstein, S. Katmadas, J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes. JHEP 1106, 070 (2011). [arXiv:1012.4020]Google Scholar
  59. 59.
    D. Klemm, O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry. [arXiv:1207.2679 [hep-th]]Google Scholar
  60. 60.
    T. Ortín, C.S. Shahbazi, The supersymmetric black holes of \({\rm N}=8\) supergravity. [arXiv:1206.3190 [hep-th]]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM/CSIC C/ Nicolás CabreraMadridSpain

Personalised recommendations