Skip to main content

Non-holomorphic Deformations of Special Geometry and Their Applications

  • Conference paper
  • First Online:
Black Objects in Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 144))

Abstract

The aim of these lecture notes is to give a pedagogical introduction to the subject of non-holomorphic deformations of special geometry. This subject was first introduced in the context of \(N=2\) BPS black holes, but has a wider range of applicability. A theorem is presented according to which an arbitrary point-particle Lagrangian can be formulated in terms of a complex function \(F\), whose features are analogous to those of the holomorphic function of special geometry. A crucial role is played by a symplectic vector that represents a complexification of the canonical variables, i.e. the coordinates and canonical momenta. We illustrate the characteristic features of the theorem in the context of field theory models with duality invariances. The function \(F\) may depend on a number of external parameters that are not subject to duality transformations. We introduce duality covariant complex variables whose transformation rules under duality are independent of these parameters. We express the real Hesse potential of \(N=2\) supergravity in terms of the new variables and expand it in powers of the external parameters. Then we relate this expansion to the one encountered in topological string theory. These lecture notes include exercises which are meant as a guidance to the reader.

Lectures given by G. L. Cardoso at the 2011 Frascati School on Black Objects in Supergravity, 9–13 May 2011

ITP-UU-12/20, Nikhef-2012-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the language of the theorem that will be presented in Sect. 1.2, this may be rephrased by saying that the Lagrangians we will consider depend on coordinates and velocities, but not on accelerations.

  2. 2.

    We will use the notation \(\mathcal{L }\) and \(\mathcal{H }\) when dealing with Lagrangian and Hamiltonian densities, respectively.

  3. 3.

    In the context of BPS black holes, \(\mathcal H \) is the Hesse potential, and the double Legendre transform of \(\mathcal{H }\) yields the entropy function [8, 32].

  4. 4.

    Note that here we have chosen a different normalization for the \(\varOmega ^{(n)}\) compared to the one in (1.72).

  5. 5.

    This quantity was first defined in [5]. It appeared later in [25], where it was denoted by \(\varDelta \).

  6. 6.

    We use the conventions of Sect. 1.4 and suppress the superscript of \(F^{(0)}\).

  7. 7.

    \(F^{(1)}\) contains an additional term proportional to the Kähler potential (1.1), but this term drops out of (1.205) due to the special geometry relation \(\bar{F}_{\bar{I} \bar{J} \bar{K}} \ {\bar{t}}^{\bar{K}} = 0\).

References

  1. B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged N=2 supergravity: Yang-Mills models. Nucl. Phys. B245, 89 (1984)

    Article  ADS  Google Scholar 

  2. E. Bergshoeff, M. de Roo, B. de Wit, Extended conformal supergravity. Nucl. Phys. B182, 173 (1981)

    Article  ADS  Google Scholar 

  3. B. de Wit, S. Katmadas, M. van Zalk, New supersymmetric higher-derivative couplings: full N\(\,=\,\)2 superspace does not count! JHEP 1101, 007 (2011). http://xxx.lanl.gov/abs/1010.2150

  4. S. Cecotti, S. Ferrara, L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A4, 2475 (1989)

    MathSciNet  ADS  Google Scholar 

  5. B. de Wit, N\(\,=\,\)2 electric-magnetic duality in a chiral background. Nucl. Phys. Proc. Suppl. 49, 191–200 (1996). http://xxx.lanl.gov/abs/hep-th/9602060

  6. A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. D.S. Freed, Special Kahler manifolds. Commun. Math. Phys. 203, 31–52 (1999). http://xxx.lanl.gov/abs/hep-th/9712042

  8. G.L. Cardoso, B. de Wit, J. Käppeli, T. Mohaupt, Black hole partition functions and duality. JHEP 0603, 074 (2006). http://xxx.lanl.gov/abs/hep-th/0601108

  9. S. Ferrara, O. Maciá, Real symplectic formulation of local special geometry. Phys. Lett. B637, 102–106 (2006). http://xxx.lanl.gov/abs/hep-th/0603111

  10. G.L. Cardoso, B. de Wit , S. Mahapatra, BPS black holes, the Hesse potential, and the topological string. JHEP 1006, 052 (2010). http://xxx.lanl.gov/abs/1003.1970

  11. D. Van den Bleeken, BPS dyons and Hesse flow. JHEP 1202, 067 (2012). http://xxx.lanl.gov/abs/1111.6979

  12. T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black hole solutions. http://xxx.lanl.gov/abs/1112.2876

  13. T. Mohaupt, O. Vaughan, Developments in special geometry. J. Phys. Conf. Ser. 343, 012078 (2012). http://xxx.lanl.gov/abs/1112.2873

    Google Scholar 

  14. N.J. Hitchin, The moduli space of complex Lagrangian submanifolds. Asian J. Math. 3, 77 (1999). http://xxx.lanl.gov/abs/math.DG/9901069

  15. D.V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds. J. Geom. Phys. 42, 85 (2002). http://xxx.lanl.gov/abs/math.DG/9910091

    Google Scholar 

  16. V. Cortés, A holomorphic representation formula for parabolic hyperspheres. http://xxx.lanl.gov/abs/math.DG/0107037

  17. L.J. Dixon, V. Kaplunovsky, J. Louis, Moduli dependence of string loop corrections to gauge coupling constants. Nucl. Phys. B355, 649–688 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  18. G.L. Cardoso, B. de Wit, T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes. Nucl. Phys. B567, 87–110 (2000). http://xxx.lanl.gov/abs/hep-th/9906094

  19. G.L. Cardoso, B. de Wit, J. Käppeli, T. Mohaupt, Asymptotic degeneracy of dyonic N\(\,=\,\) 4 string states and black hole entropy. JHEP 0412, 075 (2004). http://xxx.lanl.gov/abs/hep-th/0412287

  20. D.P. Jatkar, A. Sen, Dyon spectrum in CHL models. JHEP 0604, 018 (2006). http://xxx.lanl.gov/abs/hep-th/0510147

  21. G.L. Cardoso, B. de Wit, S. Mahapatra, Subleading and non-holomorphic corrections to N\(\,=\,\)2 BPS black hole entropy. JHEP 02, 006 (2009). http://xxx.lanl.gov/abs/0808.2627

  22. E. Witten, Quantum background independence in string theory. http://xxx.lanl.gov/abs/hep-th/9306122

  23. R. Dijkgraaf, E.P. Verlinde, M. Vonk, On the partition sum of the NS five-brane. http://xxx.lanl.gov/abs/hep-th/0205281

  24. E.P. Verlinde, Attractors and the holomorphic anomaly. http://xxx.lanl.gov/abs/hep-th/0412139

  25. M. Aganagic, V. Bouchard, A. Klemm, Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771–819 (2008). http://xxx.lanl.gov/abs/hep-th/0607100

  26. M. Günaydin, A. Neitzke, B. Pioline, Topological wave functions and heat equations. JHEP 0612, 070 (2006). http://xxx.lanl.gov/abs/hep-th/0607200

  27. B. Sahoo, A. Sen, Higher derivative corrections to non-supersymmetric extremal black holes in N\(\,=\,\)2 supergravity. JHEP 0609, 029 (2006). http://xxx.lanl.gov/abs/hep-th/0603149

  28. G.L. Cardoso, B. de Wit, S. Mahapatra, Black hole entropy functions and attractor equations. JHEP 0703, 085 (2007). http://xxx.lanl.gov/abs/hep-th/0612225

  29. E. Schrödinger, Contribution to borns new theory of the electromagnetic field. Proc. Roy. Soc. (London) A150, 465–477 (1935)

    ADS  Google Scholar 

  30. G.W. Gibbons, D.A. Rasheed, Sl(2, R) invariance of nonlinear electrodynamics coupled to an axion and a dilaton. Phys. Lett. B365, 46–50 (1996). http://xxx.lanl.gov/abs/hep-th/9509141

  31. M. Born, L. Infeld, Foundations of the new field theory. Proc. Roy. Soc. (London) A144, 425–451 (1934)

    ADS  Google Scholar 

  32. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity. JHEP 0509, 038 (2005). http://xxx.lanl.gov/abs/hep-th/0506177

  33. B. de Wit, N\(\,=\,\)2 symplectic reparametrizations in a chiral background. Fortsch. Phys. 44, 529–538 (1996). http://xxx.lanl.gov/abs/hep-th/9603191

  34. G.L. Cardoso, B. de Wit, T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy. Phys. Lett. B451, 309–316 (1999). http://xxx.lanl.gov/abs/hep-th/9812082

  35. M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Holomorphic anomalies in topological field theories. Nucl. Phys. B405, 279–304 (1993). http://xxx.lanl.gov/abs/hep-th/9302103

  36. M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). http://xxx.lanl.gov/abs/hep-th/9309140

  37. G.L. Cardoso, B. de Wit, J. Käppeli, T. Mohaupt, Stationary BPS solutions in N\(\,=\,\)2 supergravity with \(R^2\) interactions. JHEP 0012, 019 (2000). http://xxx.lanl.gov/abs/hep-th/0009234

  38. T.W. Grimm, A. Klemm, M. Mariño, M. Weiss, Direct integration of the topological string. JHEP 0708, 058 (2007). http://xxx.lanl.gov/abs/hep-th/0702187

Download references

Acknowledgments

We acknowledge helpful discussions with Thomas Mohaupt, Ashoke Sen and Marcel Vonk. The work of G.L.C. is partially supported by the Center for Mathematical Analysis, Geometry and Dynamical Systems (IST/Portugal), as well as by Fundação para a Ciência e a Tecnologia (FCT/Portugal) through grants CERN/FP/116386/2010 and PTDC/MAT/119689/2010. The work of B.d.W. is supported by the ERC Advanced Grant no. 246974, Supersymmetry: a window to non-perturbative physics. G.L.C. would like to thank Stefano Bellucci for the invitation to lecture at BOSS2011. We would like to thank each other’s institutions for hospitality during the course of this work. S.M. would also like to thank Hermann Nicolai and the members of Quantum Gravity group at the Max Planck Institut für Gravitationsphysik (AEI, Potsdam), where part of this work was carried out, for the warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Lopes Cardoso .

Editor information

Editors and Affiliations

Appendices

A   Symplectic Reparametrizations

In Sect. 1.2.1 we introduced the \(2n\)-vector \((x^i, F_i)\) and discussed its behavior under symplectic transformations. Here we consider derivatives of \(F_i\) and show how they transform under symplectic transformations. We use the resulting expressions to give an alternative proof of integrability of the Eq. (1.10). In addition, we show that \(\partial _{\eta } F\) transforms as a function under symplectic transformations.

We begin by recalling some of the elements of Sect.  1.2.1. The \(2n\)-vector \((x^i, F_i)\) is constructed using \(F(x, \bar{x}) = F^{(0)} (x) + 2 \mathrm{i } \varOmega (x, \bar{x})\). Under symplectic transformations, it transforms as,

$$\begin{aligned} \tilde{x}^i=&\, U^i{}_j\,x^j + Z^{ij} [F^{(0)}_j(x) +2\mathrm{i } \varOmega _j(x,\bar{x})],\nonumber \\ \tilde{F}_i (\tilde{x},\bar{\tilde{x}}) =&\, V_i{}^j\,[F^{(0)}_j(x) +2\mathrm{i } \varOmega _j(x,\bar{x})] + W_{ij} \,x^j, \end{aligned}$$
(1.158)

where \(U, V, Z\) and \(W\) are the \(n \times n\) submatrices (1.5) that define a symplectic transformation belonging to \(\mathrm{{Sp}} (2n, \mathbb{R })\). Without loss of generality, we decompose \(\tilde{F}_i \) as

$$\begin{aligned} \tilde{F}_i (\tilde{x},\bar{\tilde{x}}) = \tilde{F}^{(0)}_{i}(\tilde{x}) + 2\mathrm{i } \tilde{\varOmega }_i(\tilde{x},\bar{\tilde{x}}). \end{aligned}$$
(1.159)

This decomposition, which a priori is arbitrary, can be related to the decomposition of \(F_i = F_i^{(0)} + 2 \mathrm{i } \varOmega _i \) in the following way. The symplectic transformation (1.158) is specified by the matrices \(U, V, W\) and \(Z\). Consider applying the same transformation (specified by these matrices) to the vector \((x^i, F_i^{(0)})\) alone. This yields the vector \((\hat{x}^i, {\tilde{F}}_i^{(0)} (\hat{x}))\), which is expressed in terms of \( {\hat{x}}^i = \tilde{x}^i - 2\mathrm{i } Z^{ij} \varOmega _j(x,\bar{x})\) instead of \(\tilde{x}^i\),

$$\begin{aligned} \hat{x}^i=&\, U^i{}_j\,x^j + Z^{ij} F^{(0)}_j(x),\nonumber \\ \tilde{F}^{(0)}_{i}(\hat{x}) =&\, V_i{}^j\,F^{(0)}_j(x) + W_{ij} \,x^j. \end{aligned}$$
(1.160)

Thus, by demanding that \(\tilde{F}_i^{(0)}\) follows from the same symplectic transformation applied on \(F^{(0)}_i\) alone, we relate the decomposition of \(\tilde{F}_i\) to the decomposition of \(F_i\). Then, the second equation of (1.158) can be written as

$$\begin{aligned} \tilde{\varOmega }_{i}(\tilde{x},\bar{\tilde{x}}) =&\, V_i{}^j\,\varOmega _j(x,\bar{x}) - \tfrac{1}{2}\mathrm{i } [\tilde{F}^{(0)}_{i}(\hat{x}) - \tilde{F}^{(0)}_{i}(\tilde{x})] \\ =&\, V_i{}^j\,\varOmega _j(x,\bar{x}) \nonumber \\&{} + \tfrac{1}{2}\mathrm{i } \sum _{m=1}^{\infty } \frac{(2\mathrm{i })^m}{m!} Z^{j_1k_1}\varOmega _{k_1}(x,\bar{x})\cdots Z^{j_mk_m}\varOmega _{k_m}(x,\bar{x}) \; \tilde{F}^{(0)}_{i j_1\cdots j_m} \nonumber (\hat{x}), \end{aligned}$$
(1.161)

where the \(\tilde{F}^{(0)}_{i j_1\cdots j_m } (\hat{x})\) denote multiple derivatives of \(\tilde{F}^{(0)}_i(\tilde{x})\) evaluated at \(\hat{x}\). The right-hand side of (1.161) can be written entirely in terms of functions of \(x\) and \(\bar{x}\), upon expressing \(\tilde{F}^{(0)}_{i j_1\cdots j_m } (\hat{x})\) in terms of derivatives of \(F^{(0)}_i(x)\) using (1.160). We give the first few derivatives,

$$\begin{aligned} \tilde{F}^{(0)}_{ij} (\hat{x}) =&\,(V_i{}^l F^{(0)}_{lk} + W_{ik})\, [\mathcal{S }_0^{-1}]^k{}_j,\\ \tilde{F}^{(0)}_{ijk} (\hat{x}) =&\, [\mathcal{S }_0^{-1}]^l{}_i \,[\mathcal{S }_0^{-1}]^m{}_j\, [\mathcal{S }_0^{-1}]^n{}_k \,F^{(0)}_{lmn},\nonumber \\ \tilde{F}^{(0)}_{ijkl} (\hat{x}) =&\, [\mathcal{S }_0^{-1}]^m{}_{i} \,[\mathcal{S }_0^{-1}]^n{}_{j}\, [\mathcal{S }_0^{-1}]^p{}_k \,[\mathcal{S }_0^{-1}]^q{}_{l} \Big [F^{(0)}_{mnpq} - 3\, F^{(0)}_{r(mn} \mathcal{Z }_0^{rs} \, F^{(0)}_{pq)s} \Big ], \nonumber \end{aligned}$$
(1.162)

where we used the definitions

$$\begin{aligned} \mathcal{S }_0^{\,i}{}_j =&\, U^i{}_j +Z^{ik} F^{(0)}_{kj}, \nonumber \\ \mathcal{Z }_0^{ij} =&\, [\mathcal{S }_0^{-1}]^i{}_k \, Z^{kj}. \end{aligned}$$
(1.163)

Let us consider the first expression of (1.162). While \(F^{(0)}_{ij}\) is manifestly symmetric in \(i,j\), this appears not to be the case for \(\tilde{F}^{(0)}_{ij}\). However, using the properties (1.5) of the matrices \(U, V, W\) and \(Z\), it follows that \(\tilde{F}^{(0)}_{ij}\) is symmetric in \(i,j\). Using this, we obtain

$$\begin{aligned} \tilde{F}^{(0)}_{ij} (\hat{x}) \, Z^{jk} = V_i{}^k - [\mathcal{S}_0^{-1,T}]_i{}^k. \end{aligned}$$
(1.164)

Exercise 18:

Verify (1.164) by computing \(V^T \mathcal{{S}}_0\).

The symmetry of \(\tilde{F}^{(0)}_{ij}\) implies that \({\tilde{F}}^{(0)}_i (\hat{x})\) can be integrated, i.e. \({\tilde{F}}^{(0)}_i (\hat{x}) = \partial {\tilde{F}}^{(0)} ( \hat{x}) / \partial \hat{x}^i\), with \(\tilde{F}^{(0)} (\hat{x})\) given by the well-known expression [5],

$$\begin{aligned} \tilde{F}^{(0)} (\hat{x}) =&\, F^{(0)}(x) - \tfrac{1}{2} x^i F_i^{(0)} + \tfrac{1}{2} (U^T W)_{ij} \, x^i x^j + \tfrac{1}{2} (U^T V + W^T Z )_{i}{}^j x^i F_j^{(0)} \nonumber \\&\,+ \tfrac{1}{2} (Z^T V)^{ij} F_i^{(0)} F_j^{(0)}, \end{aligned}$$
(1.165)

up to a constant and up to terms linear in \(\hat{x}^i\).

In addition to (1.163), we will also need the combinations \(\mathcal{S }\) and \( \hat{\mathcal{S }}\) given in (1.167) and (1.169) below, which are related to \(\mathcal{S }_0\) by

$$\begin{aligned} \mathcal{S }^i{}_j =&\, \mathcal{S }_0^{\,i}{}_j +2\mathrm{i } Z^{ik} \varOmega _{kj},\nonumber \\ \hat{\mathcal{S }}^i{}_j =&\, \mathcal{S }_0^{\,i}{}_j +Z^{ik} \big [2\mathrm{i }\varOmega _{kj} -4\, \varOmega _{k\bar{l}} \bar{\mathcal{Z }}^{\bar{l}\bar{m}} \varOmega _{\bar{m} j} \big ], \nonumber \\ \mathcal{Z}^{ij} =&\, [ \mathcal{S}^{-1}]^i{}_k \, Z^{kj}. \end{aligned}$$
(1.166)

Observe that the matrices \(\mathcal{Z }_0\), \(\mathcal{Z }\) and \( \hat{\mathcal{Z}} = \hat{\mathcal{S}}^{-1} \, Z\) are symmetric matrices by virtue of the fact that \(Z U^T\) is a symmetric matrix [5].

Next we consider the transformation behavior of the derivatives \(F_{ij} = \partial F_i / \partial x^j\) and \(F_{i \bar{\jmath }} = \partial F_i / \partial {\bar{x}}^{\bar{\jmath }}\). First we observe that

$$\begin{aligned} \frac{\partial \tilde{x}^i}{\partial x^j} \equiv \mathcal{S}^i{}_j = U^i{}_j + Z^{ik} F_{kj} \,, \;\;\;\; \frac{\partial \tilde{x}^i}{\partial \bar{x}^{\bar{\jmath }}} \equiv Z^{ik} F_{k \bar{\jmath }}. \end{aligned}$$
(1.167)

Applying the chain rule to (1.158) yields the relation

$$\begin{aligned} F_{ij} \rightarrow {\tilde{F}}_{ij} = \left( V_i{}^l \hat{F}_{lk} + W_{ik} \right) [ \hat{\mathcal{S}}^{-1} ]^k{}_j, \end{aligned}$$
(1.168)

where \(\tilde{F}_{ij} = \partial \tilde{F}_i / \partial \tilde{x}^j \) and

$$\begin{aligned} \hat{F}_{ij} =&\, F_{ij} - F_{i \bar{k}} \,\mathcal{Z}^{\bar{k} \bar{l}} \, \bar{F}_{\bar{l} j} = F^{(0)}_{ij} +2\mathrm{i }\varOmega _{ij} -4\, \varOmega _{i\bar{k}} \, \bar{\mathcal{Z }}^{\bar{k}\bar{l}} \, \varOmega _{\bar{l} j},\nonumber \\ \hat{\mathcal{S }}^i{}_j =&\, U^i{}_j + Z^{ik} \hat{F}_{kj}. \end{aligned}$$
(1.169)

Exercise 19:

Derive (1.168) by differentiating the second equation of (1.158) with respect to either \(x\) or \(\bar{x}\). Then combine the two resulting equations to arrive at (1.168).

Then, using the first equation of (1.162) as well as (1.164) in (1.168) yields,

$$\begin{aligned} \tilde{\varOmega }_{ij}(\tilde{x},\bar{\tilde{x}}) =&\, \tfrac{1}{2} \mathrm{i } \big [\tilde{F}^{(0)}_{ij}(\tilde{x}) -\tilde{F}^{(0)}_{ij}(\tilde{x}^k-2\mathrm{i }Z^{kl}\varOmega _l(x,\bar{x})) \big ] \\&\,+[\hat{\mathcal{S }}^{-1}]^k{}_i\,[\hat{\mathcal{S }}^{-1}]^l{}_j \Big [\varOmega _{kl} + 2\mathrm{i }\varOmega _{k\bar{m}}\bar{\mathcal{Z }}^{\bar{m}\bar{n}} \varOmega _{\bar{n} l} \nonumber \\&\,{} +2\mathrm{i }(\varOmega _{km} + 2\mathrm{i }\varOmega _{k\bar{p}}\bar{\mathcal{Z }}^{\bar{p}\bar{r}} \varOmega _{\bar{r} m}) \mathcal{Z }_0^{mn} (\varOmega _{nl} + 2\mathrm{i }\varOmega _{n\bar{q}} \bar{\mathcal{Z }}^{\bar{q}\bar{s}} \varOmega _{\bar{s} l})\Big ], \nonumber \end{aligned}$$
(1.170)

which is symmetric by virtue of the symmetry of \({\tilde{F}}^{(0)}_{ij}\), \(\varOmega _{ij}\), \({ \mathcal Z}^{mn}\) and \(\mathcal{Z}_0^{mn}\).

Subsequently we derive the following result from (1.161) [21],

$$\begin{aligned} \tilde{\varOmega }_{i\bar{\jmath }} = [\hat{\mathcal{S }}^{-1}]^k{}_i\,[{\bar{\mathcal{S }}}^{-1}]^{\bar{l}}{}_{\bar{\jmath }}\, \varOmega _{k\bar{l}} =[{\mathcal{S }}^{-1}]^k{}_i[\bar{\hat{\mathcal{S }}}^{-1}]^{\bar{l}}{}_{\bar{\jmath }}\, \varOmega _{k\bar{l}}. \end{aligned}$$
(1.171)

Exercise 20:

Deduce (1.171) by taking the first line of (1.161) and differentiating it with respect to \(\bar{x}\). Use the relation (1.164) in the form

$$\begin{aligned} V_i{}^j = [\mathcal{S}_0^{-1,T}]_i{}^k + (V_i{}^l F_{lk}^{(0)} + W_{ik} ) \mathcal{Z}_0^{kj}, \end{aligned}$$
(1.172)

together with (1.166).

The relation (1.171) establishes that \(\tilde{\varOmega }_{i\bar{\jmath }} = \overline{({\tilde{\varOmega }}_{j \bar{\imath }})}.\) Using this as well as (1.15), and recalling that \(\tilde{\varOmega }_{i\bar{\jmath }} = \partial \tilde{\varOmega }_i/\partial {\bar{\tilde{x}}}^{ \bar{\jmath }}\), we obtain \(\tilde{\varOmega }_{i\bar{\jmath }} = \overline{({\tilde{\varOmega }}_{j \bar{\imath }})} = \overline{(\partial \tilde{\varOmega }_j/\partial {\bar{\tilde{x}}}^{ \bar{\imath }})} = \partial (\overline{\tilde{{\varOmega }_{j}}})/\partial {\tilde{x}}^{i} = \partial \tilde{\varOmega }_{\bar{\jmath }}/\partial {\tilde{x}}^{i} \equiv \tilde{\varOmega }_{\bar{\jmath } i} \). This, together with the symmetry of \(\tilde{\varOmega }_{ij}\), ensures the integrability of (1.158), as follows.

We consider the 1-form \(\tilde{A} = \tilde{\varOmega }_i \, d {\tilde{x}}^i + \tilde{\varOmega }_{\bar{\imath }} \, d \bar{\tilde{x}}^{\bar{\imath }}\), which is real by virtue of \(\tilde{\varOmega }_{\bar{\imath }} = (\overline{\tilde{{\varOmega }_i} }) \). Its field strength reads \(\tilde{\mathfrak{F }} = d \tilde{A} = \tilde{\varOmega }_{ij} \, d {\tilde{x}}^j \wedge \, d {\tilde{x}}^i + \left( \tilde{\varOmega }_{i \bar{\jmath }} - \tilde{\varOmega }_{\bar{\jmath } i} \right) \, d \bar{\tilde{x}}^{\bar{\jmath }} \wedge d \tilde{x}^i + \tilde{\varOmega }_{\bar{\imath } \bar{\jmath }} \, d \bar{\tilde{x}}^{\bar{\jmath }} \wedge d \bar{\tilde{x}}^{\bar{\imath }}\). Then, using \(\tilde{\varOmega }_{ij} = \tilde{\varOmega }_{ji}\) as well as \(\tilde{\varOmega }_{i \bar{\jmath }} = \tilde{\varOmega }_{\bar{\jmath } i}\), we conclude that \(\tilde{\mathfrak{F }}=0\), which establishes that locally \(\tilde{A} = d \tilde{\varOmega }\), with a real \(\tilde{\varOmega }\).

Hence we conclude that the Eq. (1.158) are integrable and the decomposition (1.7) is preserved, i.e. the transformed \(2n\)-vector \((\tilde{x}^i, \tilde{F}_i)\) is constructed from a new function \(\tilde{F} (\tilde{x}, \bar{\tilde{x}}) = \tilde{F}^{(0)} (\tilde{x}) + 2 \mathrm{i } \tilde{\varOmega }(\tilde{x}, \bar{\tilde{x}})\) with a real \(\tilde{\varOmega }(\tilde{x}, \bar{\tilde{x}})\). This was established in Sect. 1.2.1 by relying on the Hamiltonian.

Next, let us assume that the function \(F\) depends on a auxiliary real parameter \(\eta \) that is inert under symplectic transformation, i.e. \(F(x, \bar{x}; \eta )\), and let us consider partial derivatives with respect to it. A little calculation shows that \(\partial _\eta F_i\) transforms in the following way,

$$\begin{aligned} \partial _\eta \tilde{F}_i = [\hat{\mathcal{S}}{}^{-1}]^j{}_i \left[ \partial _\eta F_j - F_{j\bar{k}} \,\bar{\mathcal{Z }}{}^{\bar{k}\bar{l}} \,\partial _\eta \bar{F}_{\bar{l}}\right] , \end{aligned}$$
(1.173)

where \(\tilde{x}\) and \(\bar{\tilde{x}}\) are kept fixed under the \(\eta \)-derivative in \(\partial _\eta \tilde{F}_i(\tilde{x},\tilde{\bar{x}};\eta )\), while in \(\partial _\eta F_i(x,\bar{x};\eta )\) the arguments \(x\) and \(\bar{x}\) are kept fixed.

Exercise 21:

Verify (1.173) by differentiating the second equation of (1.158) with respect to \(\eta \), keeping \(x\) and \(\bar{x}\) fixed. Subsequently, use (1.159), (1.168) and (1.171) to arrive at (1.173).

Let us first consider (1.173) in the case of a holomorphic function \(F\), so that \(\varOmega =0\). In that case (1.173) implies that the derivative with respect to \(x^i\) of \(\partial _\eta \tilde{F}- \partial _\eta F\) must vanish. Therefore it follows that \(\partial _\eta F\) transforms as a function under symplectic transformations (possibly up to an \(x\)-independent expression, which is irrelevant in view of the same argument that led to the equivalence (1.8)).

When \(\varOmega \not =0\) one derives the following result using (1.173),

$$\begin{aligned} \frac{\partial \tilde{x}^j}{\partial x^i}\,\partial _\eta \tilde{F}_j - \frac{\partial \bar{\tilde{x}}^{\bar{\jmath }}}{\partial x^i}\,\partial _\eta (\overline{{{\tilde{F}}_{j}}} ) = \partial _\eta F_i. \end{aligned}$$
(1.174)

Exercise 22:

Deduce (1.174) by suitably combining (1.173) with its complex conjugate, and using the relation

$$\begin{aligned} \bar{\mathcal{Z}}^{\bar{\imath } \bar{\jmath }} \, {\bar{F}}_{\bar{\jmath } k} \, [\hat{\mathcal{S}}^{-1} \mathcal{S}] ^k{}_l = [ \bar{\hat{\mathcal{S }}}^{-1} {\bar{\mathcal{S}}} ]^{\bar{\imath }}{}_{\bar{\jmath }} \, \bar{\mathcal{Z}}^{\bar{\jmath } \bar{k}} \, \bar{F}_{\bar{k} l}. \end{aligned}$$
(1.175)

Next, we assume without loss of generality that the dependence of \(\tilde{F}\) on \(\eta \) is entirely contained in \(\tilde{\varOmega }\). Then, using (1.15), it follows that

$$\begin{aligned} \partial _\eta (\overline{{{\tilde{F}}_{j}}} ) = - \partial _\eta \tilde{F}_{\bar{\jmath }}, \end{aligned}$$
(1.176)

and the relation (1.174) simplifies. Namely, the left hand side of (1.174) becomes equal to \(\partial ( \partial _{\eta } {\tilde{F}} ) / \partial x^i\), where we used the existence of the new function \(\tilde{F}\). Thus, we obtain from (1.174),

$$\begin{aligned} \frac{\partial }{\partial x^i} \left( \partial _{\eta } \tilde{F} - \partial _{\eta } F \right) = 0. \end{aligned}$$
(1.177)

This equation, together with its complex conjugate equation, implies that \(\partial _\eta \tilde{F}-\partial _\eta F\) vanishes upon differentiation with respect to \(x\) and \(\bar{x}\), so that \(\partial _\eta F\) transforms as a function under symplectic transformations (possibly up to an irrelevant term that is independent of \(x\) and \(\bar{x}\)).

B   The Covariant Derivative \(\mathcal{D}_{\eta }\)

The modified derivative (1.97) acts as a covariant derivative for symplectic transformations. Here we verify this explicitly by showing that, given a quantity \(G(x, \bar{x}; \eta )\) that transforms as a function under symplectic transformations, also \(\mathcal{D}_{\eta } G\) transforms as a function.

To establish this, we need the transformation law of \(\hat{N}^{ij}\) that enters in (1.97). Under symplectic transformations, \(\hat{N}_{ij}\) given in (1.98) transforms as

$$\begin{aligned} \tilde{\hat{N}}_{ij} =\;&[\hat{\mathcal{S}}^{-1}]^k{}_i \, [{\bar{\hat{\mathcal{S}}}}^{-1} ]^{\bar{l}}{}_{\bar{\jmath }} \left[ \hat{N}_{kl} + \mathrm{i } \, F_{k \bar{m}} \, {\bar{\mathcal{Z}}}^{\bar{m} \bar{n}} \, {\bar{F}}_{\bar{n} p } \left( \delta ^p_l - \mathcal{Z}^{pq} \, F_{q \bar{l}} \right) \right. \nonumber \\&{}- \mathrm{i }\left. \,{\bar{F}}_{\bar{k} m} \, \mathcal{Z}^{mn} \, {F}_{n \bar{p}} \left( \delta ^{\bar{p}}_{\bar{l}} - {\bar{\mathcal{Z}}}^{\bar{p} \bar{q}} \, {\bar{F}}_{\bar{q} l } \right) \right] \nonumber \\&{}+ \mathrm{i } \, [\hat{\mathcal{S}}^{-1}]^k{}_i \, [{\bar{\hat{\mathcal{S}}}}^{-1}]^{\bar{l}}{}_{\bar{\jmath }} \, {\bar{F}}_{\bar{k} m} \, [\mathcal{S}^{-1} \, {\hat{\mathcal{S}}}]^m{}_l - \mathrm{i } [{\bar{\hat{\mathcal{S}}}}^{-1} ]^{\bar{k}}{}_{\bar{\imath }} \, {\bar{F}}_{\bar{k} l} \, [\mathcal{S}^{-1}]^l{}_j, \end{aligned}$$
(1.178)

where \(\mathcal{S}, \hat{\mathcal{S}}\) and \(\mathcal{Z}\) are defined in (1.166).

Exercise 23:

Verify (1.178) using (1.168) and (1.171).

Then, it follows that the inverse matrix \(\hat{N}^{ij}\) transforms as

$$\begin{aligned} \tilde{\hat{N}}^{ij} = \left( \mathcal{S}^i{}_l - Z^{in}\, F_{n \bar{l}} \right) \, \hat{N}^{lk} \, \left( \mathcal{S}^j{}_k - Z^{jm}\, F_{m \bar{k}} \right) - \mathrm{i } \, \mathcal{S}^i{}_k \, \mathcal{Z}^{kl} \, \mathcal{S}^j{}_l. \end{aligned}$$
(1.179)

Since the matrix \(\mathcal{Z} = \mathcal{S}^{-1} \, Z\) is symmetric [5], so is \(\tilde{\hat{N}}^{ij}\). Observe that it can also be written as

$$\begin{aligned} \tilde{\hat{N}}^{ij} = \left( \mathcal{\bar{S}}^{\bar{\imath }}{}_{\bar{l}} - Z^{in}\, {\bar{F}}_{{\bar{n}} l} \right) \, \hat{N}^{lk} \, \left( \mathcal{S}^j{}_k - Z^{jm}\, F_{m \bar{k}} \right) - \mathrm{i } \, Z^{il} \, Z^{jm} \, F_{l \bar{m}}. \end{aligned}$$
(1.180)

Establishing the transformation behavior (1.179) turns out to be a tedious exercise, which we relegate to end of this appendix.

Now consider a quantity \(G(x, {\bar{x}}; \eta )\) that transforms as a function under symplectic transformations, i.e. \(G(x, {\bar{x}}; \eta ) = {\tilde{G}}({\tilde{x}}, {\bar{\tilde{x}}}; \eta )\). We then calculate the behavior of \(\mathcal{D}_{\eta } G\) under symplectic transformations. First we establish

$$\begin{aligned} G_{\eta } = {\tilde{G}}_{\eta } + {\tilde{G}}_i \, Z^{ij} \, F_{\eta j} + {\tilde{G}}_{\bar{\imath }} \,Z^{ij} \, {\bar{F}}_{\eta {\bar{\jmath }}}, \end{aligned}$$
(1.181)

where, on the right hand side, the tilde quantities are differentiated with respect to the tilde variables, while those without a tilde are differentiated with respect to the original variables. Similarly,

$$\begin{aligned} G_i - G_{\bar{\imath }} = \left( {\tilde{G}}_j - {\tilde{G}}_{\bar{\jmath }}\right) \left( \mathcal{S}^j{}_i - Z^{jk} \, F_{k \bar{\imath } }\right) + \mathrm{i } \, {\tilde{G}}_{\bar{\jmath }} \, Z^{jk} \, \hat{N}_{ki}, \end{aligned}$$
(1.182)

as well as

$$\begin{aligned} F_{\eta j} = {\tilde{F}}_{\eta i} \, \mathcal{S}^i{}_j + {\tilde{F}}_{\eta \bar{\imath }} \, Z^{ik} \, {\bar{F}}_{{\bar{k}} j}, \end{aligned}$$
(1.183)

where we used that \(F_{\eta }\) transforms as a symplectic function, as established in (1.177).

Exercise 24:

Verify (1.181) and (1.182) using \(G(x, {\bar{x}}; \eta ) = {\tilde{G}}({\tilde{x}}, {\bar{\tilde{x}}}; \eta )\).

Then, inserting (1.181) and (1.182) into (1.97) yields,

$$\begin{aligned} \mathcal{D}_{\eta } G = {\tilde{G}}_{\eta } + \left( {\tilde{G}}_i - {\tilde{G}}_{\bar{\imath }}\right) Z^{ij} \, F_{\eta j} + \mathrm{i } \, \hat{N}^{ij} \left( F_{\eta j} + {\bar{F}}_{\eta \bar{\jmath }} \right) \left( {\tilde{G}}_k - {\tilde{G}}_{\bar{k}}\right) \left( \mathcal{S}^k{}_i - Z^{kl} \, F_{l \bar{\imath } }\right) . \end{aligned}$$
(1.184)

Next, using (1.183), we compute

$$\begin{aligned} \left( F_{\eta j} + {\bar{F}}_{\eta \bar{\jmath }} \right) =&\, \left( {\tilde{F}}_{\eta k} + {\bar{\tilde{F}}}_{\eta \bar{k}} \right) \left( \mathcal{S}^k{}_j - Z^{kl} \, F_{l \bar{\jmath } }\right) - \mathrm{i } \, {\bar{\tilde{F}}}_{\eta \bar{l}} \, Z^{lk} \, \hat{N}_{kj} \nonumber \\&\, + \left( {\tilde{F}}_{\eta l} + {\bar{\tilde{F}}}_{\eta l} \right) Z^{lk} \, F_{k \bar{j}} + \left( {\tilde{F}}_{\eta \bar{l}} + {\bar{\tilde{F}}}_{\eta \bar{l}} \right) Z^{lk} \, {\bar{F}}_{\bar{k} j}. \end{aligned}$$
(1.185)

Using that \(\tilde{F}\) has the decomposition

$$\begin{aligned} {\tilde{F}} ({\tilde{x}}, {\bar{\tilde{x}}};\eta ) = {\tilde{F}}^{(0)} ({\tilde{x}}) + 2 \mathrm{i } \, {\tilde{\varOmega }}({\tilde{x}}, {\bar{\tilde{x}}};\eta ) \end{aligned}$$
(1.186)

with \({\tilde{\varOmega }}\) real, it follows that the second line of (1.185) vanishes. Inserting the first line of (1.185) into (1.184) and using \(F_{i \bar{\jmath }} = - {\bar{F}}_{\bar{\jmath } i}\) as well as \(\mathcal{S} \, Z^T = Z \, \mathcal{S}^T\), we obtain

$$\begin{aligned} \mathcal{D}_{\eta } G = {\tilde{G}}_{\eta } + \mathrm{i } \, {\tilde{N}}^{ij} \left( {\tilde{F}}_{\eta j} + \bar{\tilde{F}}_{\eta \bar{\jmath }} \right) \left( \tilde{G}_{i} - \tilde{G}_{\bar{\imath }} \right) = \widetilde{\left( \mathcal{D}_{\eta } G \right) }, \end{aligned}$$
(1.187)

which shows that \(\mathcal{D}_{\eta } G\) transforms as a function under symplectic transformations.

Now we return to the transformation behavior of \({\hat{N}}^{ij}\) given in (1.179) and verify that it is the inverse of (1.178), i.e. \(\tilde{\hat{N}}^{-1} \, \tilde{\hat{N}} = \mathbb I \). We use the decomposition \(F(x, \bar{x}; \eta ) = F^{(0)}(x) + 2 \mathrm{i } \varOmega (x, \bar{x} ; \eta )\). We find it useful to introduce the following matrix notation,

$$\begin{aligned} {\bar{\mathcal{S}}}^{-1} \, \mathcal{S} =&\, \mathbb{I } + {\bar{\mathcal{Z}}} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) , \nonumber \\ \mathcal{S}^{-1} \, {\hat{\mathcal{S}}} =&\, \mathbb{I } - X \;\;\;,\;\;\; X = \mathcal{Z} \, F_{\cdot \,-} \, {\bar{\mathcal{Z}}} {\bar{F}}_{- \cdot } = 4 \, \mathcal{Z} \, \varOmega _{\cdot \,-} \, {\bar{\mathcal{Z}}} \, {\varOmega }_{- \cdot } ,\nonumber \\ {\hat{\mathcal{S}}}^{-1} \mathcal{S} =&\, \left( \mathbb{I } - X \right) ^{-1} = \sum _{n=0}^{\infty } X^n, \nonumber \\ {\bar{\hat{\mathcal{S}}}} =&\, \mathcal{S} \left[ \mathbb{I } - X - \mathcal{Z} \left( {\hat{F}}_{\cdot \cdot } - {\bar{\hat{F}}}_{-- } \right) \right] = \left[ \mathbb{I } - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] , \nonumber \\ \mathcal{Z} - {\bar{\mathcal{Z}}} =&\, - {\bar{\mathcal{Z}}} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) \mathcal{Z} = - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) {\bar{\mathcal{Z}}}, \end{aligned}$$
(1.188)

where we assume that the power series expansion of \(\mathcal{S}^{-1} \, {\hat{\mathcal{S}}}\) is convergent. Here \(F_{\cdot \cdot } \;,\; F_{--} \;,\; F_{\cdot -}\) denote entries of the type \(F_{ij}, F_{\bar{\imath } \bar{\jmath }}, F_{i \bar{\jmath }}\), respectively. Then, using (1.178), we compute

$$\begin{aligned} \mathcal{S}^T \, \tilde{\hat{N}} \, {\bar{\hat{\mathcal{S}}}} =&\, \sum _{n=0}^{\infty } \left( X^n\right) ^T \left( \hat{N} + 4 \mathrm{i } \, \varOmega _{\cdot -} \, {\bar{\mathcal{Z}}} \, \varOmega _{- \cdot } - 4 \mathrm{i } \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} + 2 \varOmega _{\cdot -} \, {\bar{X}} + 2 \varOmega _{-\cdot } \right) \\&\, - 2 \left( {\bar{\mathcal{S}}}^{-1} \, \mathcal{S} \right) ^T \sum _{n=0}^{\infty } \left( {\bar{X}}^n\right) ^T \, \varOmega _{- \cdot } \left[ \mathbb I - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] . \nonumber \end{aligned}$$
(1.189)

Multiplying this with \(\tilde{\hat{N}}^{-1} \, \mathcal{S}^{-1,T}\) from the left and requiring the resulting expression to equal \({\bar{\hat{\mathcal{S}}}}\) yields the relation

$$\begin{aligned}&\left[ \hat{N}^{-1} - 2 \mathrm{i } \, \hat{N}^{-1} \, \varOmega _{- \cdot } \, \mathcal{Z} - 2 \mathrm{i } \, \mathcal{Z} \, \varOmega _{\cdot -} \, \hat{N}^{-1} - 4 \mathcal{Z} \, \varOmega _{\cdot -} \, \hat{N}^{-1} \, \varOmega _{- \cdot } \, \mathcal{Z} - \mathrm{i } \mathcal{Z} \right] \nonumber \\&\qquad \quad \left[ \sum _{n=0}^{\infty } \left( X^n\right) ^T \left( \hat{N} + 4 \mathrm{i } \, \varOmega _{\cdot -} \, {\bar{\mathcal{Z}}} \, \varOmega _{- \cdot } - 4 \mathrm{i } \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} + 2 \varOmega _{\cdot -} \, {\bar{X}} + 2 \varOmega _{- \cdot } \right) \right. \nonumber \\&\qquad \left. {}-2 \left( {\bar{\mathcal{S}}}^{-1} \, \mathcal{S} \right) ^T \sum _{n=0}^{\infty } \left( {\bar{X}}^n\right) ^T \, \varOmega _{- \cdot } \left[ \mathbb{I } - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] \right] \nonumber \\&{}= \left[ \mathbb I - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] . \end{aligned}$$
(1.190)

Thus, checking \(\tilde{\hat{N}}^{-1} \, \tilde{\hat{N}} = \mathbb{I }\) amounts to verifying the relation (1.190). To do so, we write (1.190) as a power series in \(\mathcal{Z}\) by converting \(\bar{\mathcal{Z}}\) into \(\mathcal{Z}\) using the last relation in (1.188). Introducing the expressions

$$\begin{aligned} \sigma =&\, 4 \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \, \mathcal{Z}, \nonumber \\ \varDelta =&\, \sum _{n=1}^{\infty } \left[ \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) \mathcal{Z} \right] ^n, \end{aligned}$$
(1.191)

we obtain

$$\begin{aligned} {\bar{X}} =&\, 4 \, \mathcal{Z} \left( \mathbb I + \varDelta \right) \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -}, \nonumber \\ {\bar{X}}^T \, \varOmega _{- \cdot } =&\, \varOmega _{- \cdot } \, X , \nonumber \\ \sum _{n=0}^{\infty } \left( {\bar{X}}^n\right) ^T \, \varOmega _{- \cdot } =&\, \varOmega _{- \cdot } \, \sum _{n=0}^{\infty } X^n, \nonumber \\ X^n =&\, 4 \, \mathcal{Z} \, \varOmega _{\cdot -} \, \mathcal{Z} \left[ \left( \mathbb{I } + \varDelta \right) \sigma \right] ^{n-1} (\mathbb{I } + \varDelta ) \, \varOmega _{- \cdot } ,\;\;\;\;\;\; n \geqslant 1, \nonumber \\ \left( X^n\right) ^T =&\, 4 \, \varOmega _{\cdot -} ( \mathbb{I } + \varDelta ^T) \left[ \sigma ^T (\mathbb{I } + \varDelta ^T) \right] ^{n-1} \mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} ,\;\;\;\;\;\; n \geqslant 1 ,\nonumber \\ \left( {\bar{\mathcal{S}}}^{-1} \, \mathcal{S} \right) ^T =&\, \mathbb{I } + \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) \mathcal{Z} \left( \mathbb{I } + \varDelta \right) . \end{aligned}$$
(1.192)

Then, (1.190) becomes

$$\begin{aligned}&\left[ \mathbb{I } - 2 \mathrm{i } \, \varOmega _{- \cdot } \, \mathcal{Z} - 2 \mathrm{i } \, \hat{N} \, \mathcal{Z} \, \varOmega _{\cdot -} \, \hat{N}^{-1} - 4 \, \hat{N} \, \mathcal{Z} \, \varOmega _{\cdot -} \, \hat{N}^{-1} \, \varOmega _{- \cdot } \, \mathcal{Z} - \mathrm{i } \, \hat{N} \, \mathcal{Z} \right] \nonumber \\&\left[ \sum _{n=0}^{\infty } \left( X^n\right) ^T \left[ \hat{N} + 4 \mathrm{i } \, \varOmega _{\cdot -} \, \mathcal{Z} \, \left( \mathbb I + \varDelta \right) \varOmega _{- \cdot } - 4 \mathrm{i } \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right. \right. \nonumber \\&\left. {}+ 8 \varOmega _{\cdot -} \, \mathcal{Z} \left( \mathbb I + \varDelta \right) \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} + 2 \varOmega _{- \cdot } \Big ] \right. \nonumber \\&\left. - 2 \left[ \mathbb I + \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) \mathcal{Z} \left( \mathbb I + \varDelta \right) \right] \varOmega _{-\cdot } \, \sum _{n=0}^{\infty } X^n \left[ \mathbb I - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) \right. \right. \nonumber \\&\left. {} - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] \Big ] = \hat{N} \, \left[ \mathbb I - \mathcal{Z} \left( F_{\cdot \cdot } - {\bar{F}}_{--} \right) - 4 \,\mathcal{Z} \, \varOmega _{- \cdot } \, \mathcal{Z} \, \varOmega _{\cdot -} \right] ,\qquad \quad \end{aligned}$$
(1.193)

where \(X^n\) (with \(n\geqslant 1\)) is expressed in terms of \(\mathcal{Z}\) according to (1.192). Now we proceed to check that (1.193) is indeed satisfied, order by order in \(\mathcal{Z}\). Observe that the right hand side of (1.193) is quadratic in \(\mathcal{Z}\), so first we check the cancellation of the terms up to order \(\mathcal{Z}^2\). Then we proceed to check the terms at order \(n\) with \(n\geqslant 3\). Here we use the relations

$$\begin{aligned} F_{\cdot \cdot } - {\bar{F}}_{--} =&\, \mathrm{i } \hat{N} + 2 \mathrm{i } \varOmega _{\cdot -} + 2 \mathrm{i } \varOmega _{- \cdot }, \nonumber \\ \varDelta ^T \, \mathcal{Z} =&\, \mathcal{Z} \, \varDelta , \nonumber \\ \left[ \sigma ^T \left( \mathbb I + \varDelta ^T \right) \right] ^n \mathcal{Z} =&\, \mathcal{Z} \left[ \sigma \left( \mathbb I + \varDelta \right) \right] ^n , \end{aligned}$$
(1.194)

and we organize the terms at order \(n\) into those that end on either \(N\) (introduced in (1.100)), \(\varOmega _{\cdot -}\) or \(\varOmega _{- \cdot }\). It is then straightforward, but tedious, to check that at order \(n\) in \(\mathcal{Z}\) all these terms cancel out. This establishes the validity of the transformation law (1.179).

C   The Holomorphic Anomaly Equation in Big Moduli Space

The holomorphic anomaly Eq. (1.157) of perturbative topological string theory [35, 36] can be suscintly derived in the wave function approach [22] to the latter [2326]. In this approach, the topological string partition function \(Z\) is represented by a wavefunction,

$$\begin{aligned} Z(t; t_B, {\bar{t}}_B ) = \int d\phi \, \mathrm{{e}}^{-S(\phi ,t; t_B, {\bar{t}}_B)/\hbar } \, Z(\phi ), \end{aligned}$$
(1.195)

where \(S(\phi ,t; t_B, {\bar{t}}_B)\) denotes the generating function (1.114) of canonical transformationsFootnote 6. We take the background dependent constant \(c(t_B, {\bar{t}}_B)\) appearing in \(S\) to be given by [2326]

$$\begin{aligned} c(t_B, {\bar{t}}_B) = - \frac{\hbar }{2} \, \ln \det N_{IJ}(t_B, {\bar{t}}_B), \end{aligned}$$
(1.196)

with \(N_{IJ}\) as in (1.132).

Differentiating (1.195) with respect to the background field \({\bar{t}}_B\) on the one hand, and with respect to the fluctuations \(t\) on the other hand, yields the relation [24],

$$\begin{aligned} \frac{\partial Z(t; t_B, {\bar{t}}_B)}{\partial {\bar{t}}_B^L} = \frac{\hbar }{2} \, {\bar{F}}_{\bar{L}}{}^{IJ} \, \frac{\partial }{\partial t^I} \frac{\partial }{\partial t^J} Z(t; t_B, {\bar{t}}_B). \end{aligned}$$
(1.197)

Here \({\bar{F}}_{\bar{L}}{}^{IJ}\) is evaluated on the background, and is given by \({\bar{F}}_{\bar{L}}{}^{IJ} = {\bar{F}}_{\bar{L} \bar{M} \bar{O}} N^{MI} N^{OJ}\). Assigning scaling dimension \(1\) to both \(t_B\) and \(t\) (and to their complex conjugates) and scaling dimension \(2\) to \(\hbar \), we see that (1.197) has scaling dimension \(-1\). Setting

$$\begin{aligned} Z(t; t_B, {\bar{t}}_B) = \mathrm{{e}}^{W(t; t_B, {\bar{t}}_B)/\hbar }, \end{aligned}$$
(1.198)

we obtain from (1.197)

$$\begin{aligned} \frac{ \partial W(t; t_B, {\bar{t}}_B)}{\partial {\bar{t}}_B^L} = \tfrac{1}{2} \, {\bar{F}}_{\bar{L}}{}^{IJ} \, \left( \hbar \, \frac{\partial ^2 W }{\partial t^I \, \partial t^J} + \frac{\partial W}{\partial t^I} \, \frac{\partial W}{\partial t^J} \right) , \end{aligned}$$
(1.199)

which has scaling dimension \(1\). The BCOV-solution [36] is obtained by making the ansatz [38]

$$\begin{aligned} W = \sum _{g=0,n=0}^{\infty } \frac{\hbar ^g}{n!} \, C^{(g)}_{I_1 \dots I_n} (t_B, {\bar{t}}_B) \, t^{I_1} \dots t^{I_n}, \end{aligned}$$
(1.200)

with

$$\begin{aligned} C^{(g)}_{I_1 \dots I_n} = 0 ,\;\;\;\;\;\; 2g - 2 + n \leqslant 0. \end{aligned}$$
(1.201)

The \( C^{(g)}_{I_1 \dots I_n}\) are symmetric in \(I_1, \dots , I_n\) and have scaling dimension \(2 - 2g -n\). Inserting the ansatz (1.200) into (1.199), equating the terms of order \(\hbar ^g\) for \(g \geqslant 2\) and setting \(t=0\) gives,

$$\begin{aligned} \partial _{\bar{L}} C^{(g)}(t_B, {\bar{t}}_B) = \tfrac{1}{2} \, {\bar{F}}_{\bar{L}}{}^{IJ} \, \left( C^{(g-1)}_{IJ} + \sum _{r=1}^{g-1} C^{(r)}_{I} \, C^{(g-r)}_{J} \right) ,\;\;\;\;\;\; g \geqslant 2. \end{aligned}$$
(1.202)

Exercise 25:

Verify (1.202).

Now we set [38]

$$\begin{aligned} C^{(g)}_{I_1 \dots I_n} = D_{I_1} \dots D_{I_n} F^{(g)} ,\;\;\;\;\;\; g\geqslant 1, \end{aligned}$$
(1.203)

where \(D_L\) is given by

$$\begin{aligned} D_L V_M = \partial _L V_M + \mathrm{i } \, N^{PI} F_{ILM} V_P. \end{aligned}$$
(1.204)

\(D_L\) acts as a covariant derivative for symplectic reparametrizations \(V_M \rightarrow \left( \mathcal{S}_0^{-1} \right) ^P{}_M V_P\), since \(N^{IJ}\) transforms as \(N^{IJ} \rightarrow [\mathcal{S}_0 \, N^{-1} \, \mathcal{S}_0 ]^{IJ} - \mathrm{i } [\mathcal{S}_0 \, \mathcal{Z}_0 \, \mathcal{S}_0]^{IJ}\) (see (1.179)). The \(F^{(g)}\) have scaling dimension \(2 - 2g\) and transform as functions under symplectic transformations. Inserting (1.203) into (1.202) yields the holomorphic anomaly equation in big moduli space [38],

$$\begin{aligned} \partial _{\bar{L}} F^{(g)}(t_B, {\bar{t}}_B) = \tfrac{1}{2} \, {\bar{F}}_{\bar{L}}{}^{IJ} \, \left( D_I \partial _J F^{(g-1)} + \sum _{r=1}^{g-1} \partial _I F^{(r)}\, \partial _J F^{(g-r)} \right) ,\;\;\;\;\;\; g \geqslant 2. \end{aligned}$$
(1.205)

As an example, consider solving (1.205) for \(g=2\). We need \(F_I^{(1)} = \partial _I F^{(1)} (t_B,\bar{t}_B)\), which is non-holomorphic and given byFootnote 7

$$\begin{aligned} \partial _I F^{(1)}(t_B, \bar{t}_B) = \partial _I f^{(1)}(t_B) + \tfrac{1}{2} \, \mathrm{i } \, F_{IJK} \, N^{JK}. \end{aligned}$$
(1.206)

Then, solving (1.205) for \(F^{(2)}\) yields [25, 38]

$$\begin{aligned} F^{(2)}(t_B, \bar{t}_B) =&\, f^{(2)}(t_B) + \tfrac{1}{2} \, \mathrm{i } \, {N}^{IJ} \left( D_I {F}_J^{(1)} + {F}^{(1)}_I {F}^{(1)}_J \right) \nonumber \\&\, + \tfrac{1}{2} {N}^{IJ} {N}^{KL} \left( \tfrac{1}{4} F_{IJKL} + \tfrac{1}{3} \mathrm{i } \, N^{MN} F_{IKM} F_{JLN} + F_{IJK} {F}^{(1)}_L \right) . \end{aligned}$$
(1.207)

In this expression, all the terms are evaluated on the background \((t_B, \bar{t}_B)\).

Exercise 26:

Verify that (1.207) solves (1.205).

Observe that (1.206) transforms covariantly under symplectic transformations, provided that \(f^{(1)}\) transforms as \(f^{(1)} \longrightarrow f^{(1)} - \tfrac{1}{2} \ln \det \mathcal{S }_0\) in order to compensate for the transformation behavior \(N_{IJ} \longrightarrow N_{KL} \, [ \bar{\mathcal{S }_0}^{-1}]^K{}_I \, [ \mathcal{S }_0^{-1} ]^L{}_J\) [5], so that

$$\begin{aligned} f_I^{(1)}&\longrightarrow \left( f_J^{(1)}- \tfrac{1}{2} \mathcal{Z}_0^{PQ} \, F_{PQJ} \right) \left( \mathcal{S}_0^{-1} \right) ^J{}_I, \nonumber \\ f_{IJ}^{(1)}&\longrightarrow \left( \mathcal{S}_0^{-1} \right) ^Q{}_J \, \partial _Q \left[ \left( f_L^{(1)}- \tfrac{1}{2} \mathcal{Z}_0^{PQ} \, F_{PQL} \right) \left( \mathcal{S}_0^{-1} \right) ^L{}_I \right] . \end{aligned}$$
(1.208)

Exercise 27:

Determine the transformation behavior of \(f^{(2)}(t_B)\) under symplectic transformations (1.128) that ensures that \(F^{(2)}(t_B, \bar{t}_B)\) transforms as a function. A useful transformation law is,

$$\begin{aligned} F_{IJKL} \longrightarrow&\, \left( \mathcal{S}_0^{-1} \right) ^M{}_I \, \partial _M \left[ F_{NOP} \left( \mathcal{S}_0^{-1} \right) ^N{}_J \, \left( \mathcal{S}_0^{-1} \right) ^O{}_K \,\left( \mathcal{S}_0^{-1} \right) ^P{}_L \right] \nonumber \\&\, = \left( \mathcal S _0^{-1}\right) ^M{}_I \left( \mathcal S _0^{-1}\right) ^N{}_J \left( \mathcal S _0^{-1}\right) ^O{}_K \left( \mathcal S _0^{-1}\right) ^P{}_L \Big [F_{MNOP} \nonumber \\&\, \qquad - F_{MPS} \mathcal{Z}_0^{SR} F_{RNO} - F_{OPS} \mathcal{Z}_0^{SR} F_{RMN} - F_{NPS} \mathcal{Z}_0^{SR} F_{ROM} \Big ]. \end{aligned}$$
(1.209)

D   The Functions \(\mathcal H ^{(a)}_i\) for \(a\geqslant 2\)

Here we collect the explicit results for the various functions \(\mathcal{H }^{(a)}_i\) (with \(a \geqslant 2\)) that appear in (1.143). These functions can be determined by iteration. We present the functions up to order \(\mathcal{O }(\varOmega ^4)\). We use the notation \((N \varOmega )^I = N^{IJ} \varOmega _J \,,\, (N \bar{\varOmega })^I = N^{IJ} \varOmega _{\bar{J}}\). The symmetrization \(F_{R(IJ} N^{RS} F_{KL)S}\) is defined with a symmetrization factor \(1/(4!)\).

$$\begin{aligned} \mathcal{H }^{(2)}=\;&8\, N^{IJ}\varOmega _I \varOmega _{\bar{J}} -16\,\big [\varOmega _{IJ} (N\bar{\varOmega })^I (N\varOmega )^J +\,\varOmega _{I\bar{J}} (N\bar{\varOmega })^I (N\bar{\varOmega })^J + \mathrm{{h.c.}} \big ] \nonumber \\&{} - 8 \mathrm{i } \,\big [F_{IJK} (N\bar{\varOmega })^I (N\varOmega )^J (N\varOmega )^K - \mathrm{{h.c.}} \big ] \nonumber \\&{} + \tfrac{16}{3} \mathrm{i } \left[ \left( F_{IJKL} + 3 \mathrm{i } F_{IJR} N^{RS} F_{SKL} \right) \, (N\varOmega )^I (N\varOmega )^J (N\varOmega )^K (N \bar{\varOmega })^L\right. \nonumber \\&{} - \mathrm{{h.c.}}\left. \right] + 16\, \big [ \varOmega _{IJK} \, (N\varOmega )^I (N\varOmega )^J (N \bar{\varOmega })^K + \mathrm{{h.c.}} \big ] \nonumber \\&{} + 16\, \big [ \left( \varOmega _{IJ\bar{K}} + \mathrm{i } F_{IJP} N^{PQ} \varOmega _{Q \bar{K}} \right) \, \left( (N\varOmega )^I (N\varOmega )^J (N \varOmega )^K \right. \nonumber \\&{}+2 \left. (N\varOmega )^I (N \bar{\varOmega })^J (N \bar{\varOmega })^K \right) + \mathrm{{h.c.}} \big ] \nonumber \\&{} + 32\, \Big [\varOmega _{IQ} \, N^{QR} \, \varOmega _{RJ} \, (N \varOmega )^I (N \bar{\varOmega })^J + \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 32\, \varOmega _{IQ} \, N^{QR} \, {\varOmega }_{\bar{R} \bar{J}} \, (N \varOmega )^I (N \bar{\varOmega })^J \nonumber \\&{} + 16 \mathrm{i } \Big [ F_{IJK} \, N^{KP} \, \varOmega _{PQ} \, \left( (N \varOmega )^I (N \varOmega )^J (N \bar{\varOmega })^Q \right. \nonumber \\&{}+ 2 \left. (N \varOmega )^Q (N \varOmega )^I (N \bar{\varOmega })^J \right) - \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 16 \mathrm{i } \Big [ F_{IJK} \, N^{KP} \, \varOmega _{\bar{P} \bar{Q}} \, (N \varOmega )^I (N \varOmega )^J (N \bar{\varOmega })^Q - \mathrm{{h.c.}} \Big ] \nonumber \\&{} +8\, (N \varOmega ) ^I \, (N \varOmega )^J \, F_{IJQ} N^{QR} {\bar{F}}_{\bar{R} \bar{K} \bar{L}} (N \bar{\varOmega })^K (N \bar{\varOmega })^L \nonumber \\&{} + 32 \Big [(N \varOmega )^I \, \varOmega _{IJ} \, N^{JK} \varOmega _{K \bar{L}} (N \varOmega )^L + \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 32 \Big [(N \bar{\varOmega })^I \, \varOmega _{IJ} \, N^{JK} \varOmega _{K \bar{L}} (N \bar{\varOmega })^L + \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 32 \Big [(N \varOmega )^I \, \varOmega _{IJ}\, N^{JK} \varOmega _{\bar{K} L} (N \varOmega )^L + \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 16 \mathrm{i } \Big [ (N\varOmega )^I (N\varOmega )^J F_{IJK} N^{KL} \varOmega _{\bar{L} P} (N\varOmega )^P - \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 32 \Big [(N \varOmega )^I \varOmega _{I\bar{J}} \, N^{JK} \, \varOmega _{\bar{K} L} \, (N \bar{\varOmega })^L + \mathrm{{h.c.}} \Big ] \nonumber \\&{} + 32 \Big [(N \varOmega )^I \varOmega _{I\bar{J}} \, N^{JK} \,\varOmega _{K \bar{L}}\, (N \bar{\varOmega })^L \Big ],\end{aligned}$$
(1.210)
$$\begin{aligned} \mathcal{H }^{(3)}_1=&\,- \tfrac{8}{3}\mathrm{i } F_{IJK} (N\bar{\varOmega })^I(N\bar{\varOmega })^J(N\bar{\varOmega })^K \nonumber \\&{} +8 \mathrm{i }\, F_{IJK} (N\bar{\varOmega })^J (N\bar{\varOmega })^K \, N^{IP} \left[ 2 \varOmega _{\bar{P} \bar{Q}} (N \bar{\varOmega })^Q + 2 \varOmega _{\bar{P} Q} (N \varOmega )^Q \right. \nonumber \\&{} - \mathrm{i }\left. \bar{F}_{\bar{P} \bar{Q} \bar{R}} (N \bar{\varOmega })^Q (N \bar{\varOmega })^R \right] ,\end{aligned}$$
(1.211)
$$\begin{aligned} \mathcal{H }^{(3)}_2=\;&8\, \left( \varOmega _{IJ} + \mathrm{i } F_{IJK} (N \varOmega )^K \right) (N \bar{\varOmega })^I (N \bar{\varOmega })^J \nonumber \\&{}-\tfrac{4}{3} \mathrm{i } \left( F_{IJKL} + 3 \mathrm{i } F_{R(IJ} N^{RS} F_{KL)S} \right) \left( 6 (N \varOmega )^I (N \varOmega )^J (N \bar{\varOmega })^K (N \bar{\varOmega })^L \right. \nonumber \\&{}-4 \left. (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \bar{\varOmega })^K (N \varOmega )^L \right) \Big ] \nonumber \\&{}-\tfrac{16}{3} \, \varOmega _{IJK} \left( 3\,(N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \varOmega )^K - (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \bar{\varOmega })^K\right) \nonumber \\&{} - 16\,\varOmega _{IJ\bar{K}} (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \bar{\varOmega })^K \nonumber \\&{} - 16 \mathrm{i } \,F_{IJK} N^{KP} \,\varOmega _{PQ} \big [- (N \bar{\varOmega })^I ( N \bar{\varOmega })^J (N \bar{\varOmega })^Q\nonumber \\&{} + (N \bar{\varOmega })^I ( N \bar{\varOmega })^J (N \varOmega )^Q + 2 (N \bar{\varOmega })^I ( N \varOmega )^J (N \bar{\varOmega })^Q \big ] \nonumber \\&{} - 16 \, (N \bar{\varOmega })^P \, \varOmega _{PQ} \, N^{QR} \varOmega _{RK} \, (N \bar{\varOmega })^K \nonumber \\&{} - 32 \, (N \varOmega )^I \, \left( \varOmega _{IJ} + \mathrm{i } F_{IJP} (N \varOmega )^P \right) \, N^{JK} \left( \varOmega _{\bar{K} \bar{L}} - \mathrm{i } {\bar{F}}_{\bar{K} \bar{L} \bar{M}} (N \bar{\varOmega })^M \right) (N \varOmega )^L\nonumber \\&{} + 16 \mathrm{i } (N \varOmega )^I (N \varOmega )^J F_{IJP}N^{PK} \left( {\varOmega }_{\bar{K} \bar{L}} - \mathrm{i } {\bar{F}}_{ \bar{K} \bar{L} \bar{Q}} (N \bar{\varOmega })^{\bar{Q}} \right) (N \varOmega )^L \nonumber \\&{} - 16\, (N \varOmega )^P \varOmega _{\bar{P} Q} N^{QR}\varOmega _{R \bar{K}} (N \varOmega )^K \nonumber \\&{} - 32 \, (N \bar{\varOmega })^I \left( \varOmega _{IJ} + \mathrm{i } F_{IJK} (N \varOmega )^K \right) N^{JL} \varOmega _{\bar{L} M} (N \varOmega )^M \nonumber \\&{} - 16 \mathrm{i } \,( N \bar{\varOmega })^I \, (N \bar{\varOmega })^J F_{IJK}N^{KP} \varOmega _{P \bar{Q}} (N \bar{\varOmega })^Q, \end{aligned}$$
(1.212)
$$\begin{aligned} \mathcal{H }^{(3)}_3=\;&16\,\varOmega _{I\bar{J}} (N\bar{\varOmega })^I (N\varOmega )^J \nonumber \\&{}- 16\,\Big [ 2 (N \bar{\varOmega })^K (N \varOmega )^L \left( \varOmega _{KM} N^{MN} \varOmega _{N \bar{L}} + \varOmega _{K \bar{L} Q} (N \varOmega )^Q\right) \nonumber \\&{} + (N \bar{\varOmega })^K \varOmega _{K \bar{L}} N^{LP} \left( \mathrm{i } F_{PMN} (N \varOmega )^M (N \varOmega )^N + 2 \varOmega _{PJ}(N \varOmega )^J \right. \nonumber \\&{}+2\left. \varOmega _{P \bar{J}} (N \bar{\varOmega })^J \right) + 2 \mathrm{i } (N \bar{\varOmega })^I (N \varOmega )^J F_{IJK} N^{KP} \varOmega _{P \bar{Q}} (N \varOmega )^Q + \mathrm{{h.c.}} \Big ], \end{aligned}$$
(1.213)
$$\begin{aligned} \mathcal{H }^{(4)}_1=\;&32 \, (N \bar{\varOmega })^I \left( \varOmega _{IJ} + \mathrm{i } {F}_{IJK} (N \varOmega )^K \right) N^{JP} \left( \varOmega _{\bar{P} \bar{Q}} - \mathrm{i } {\bar{F}}_{\bar{P} \bar{Q} \bar{R}} (N \bar{\varOmega })^R\right) (N \varOmega )^Q, \end{aligned}$$
(1.214)
$$\begin{aligned} \mathcal{H }^{(4)}_2=\;&32 \, (N \varOmega )^P \, \varOmega _{\bar{P} Q} \, N^{QR} \, \varOmega _{\bar{R} K}\, (N \bar{\varOmega })^K \end{aligned}$$
(1.215)
$$\begin{aligned} \mathcal{H }^{(4)}_3=\;&8 \, F_{IJR} N^{RS} {\bar{F}}_{\bar{S} \bar{K} \bar{L}} \, (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N\varOmega )^K (N \varOmega )^L, \end{aligned}$$
(1.216)
$$\begin{aligned} \mathcal{H }^{(4)}_4=\;&- \tfrac{4}{3} \mathrm{i } \left( F_{IJKL} + 3 \mathrm{i } \, F_{IJR} N^{RS} F_{SKL} \right) (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \bar{\varOmega })^K (N\bar{\varOmega })^L, \end{aligned}$$
(1.217)
$$\begin{aligned} \mathcal{H }^{(4)}_5=\;&- 16 \mathrm{i } \, F_{IJK} N^{KL} \varOmega _{\bar{L} Q} \, (N \bar{\varOmega })^Q (N \bar{\varOmega })^I (N \bar{\varOmega })^J,\end{aligned}$$
(1.218)
$$\begin{aligned} \mathcal{H }^{(4)}_6=\;&- 16 \mathrm{i }\, F_{IJK} N^{KP}\left( \varOmega _{\bar{P} \bar{Q}} - \mathrm{i } {\bar{F}}_{\bar{P} \bar{Q} \bar{R}} (N \bar{\varOmega })^R \right) (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \varOmega )^Q,\end{aligned}$$
(1.219)
$$\begin{aligned} \mathcal{H }^{(4)}_7=\;&16 \,\left( \varOmega _{IJ\bar{K}} + \mathrm{i } F_{IJP} \, N^{PQ} \, \varOmega _{Q \bar{K}}\right) \, (N \bar{\varOmega })^I (N \bar{\varOmega })^J (N \varOmega )^K, \end{aligned}$$
(1.220)
$$\begin{aligned} \mathcal{H }^{(4)}_8 =&\, 32 \, (N \bar{\varOmega })^I \left( \varOmega _{IJ} + \mathrm{i } {F}_{IJK} (N \varOmega )^K \right) N^{JP} \varOmega _{\bar{P} Q} \, (N \bar{\varOmega })^Q, \end{aligned}$$
(1.221)
$$\begin{aligned} \mathcal{H }^{(4)}_9 =&\, - 16 \mathrm{i } \, (N \bar{\varOmega })^I (N \bar{\varOmega })^J F_{IJK} N^{KL} \varOmega _{\bar{L} P} (N \bar{\varOmega })^P. \end{aligned}$$
(1.222)

E   Transformation Laws by Iteration

The Hesse potential in Sect. 1.4 depends on \(\varOmega \), whose behavior under symplectic transformations can be determined by iteration. Here we summarize the result for the transformation behavior of derivatives of \(\varOmega \) (expressed in terms of the covariant variables of Sect. 1.3), up to a certain order. We use the conventions of Sect. 1.4 and suppress the superscript of \(F^{(0)}\).

$$\begin{aligned} {\tilde{\varOmega }}_I=\;&[\mathcal{S }_0^{-1}]^J{}_I \Big [ \varOmega _J +\mathrm{i } F_{JKL} \,\left( \mathcal{Z }_0 \varOmega \right) ^K\,(\mathcal{Z }_0 \varOmega )^L -2\mathrm{i } \varOmega _{JK} (\mathcal{Z }_0 \varOmega )^K\nonumber \\&\,+2\mathrm{i } \varOmega _{J\bar{K}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{K}} + \tfrac{2}{3} F_{JKLP} (\mathcal{Z }_0 \varOmega )^K (\mathcal{Z }_0 \varOmega )^L (\mathcal{Z }_0 \varOmega )^P\nonumber \\&\, + 2 F_{KLP} (\mathcal{Z }_0 \varOmega )^K{}_J (\mathcal{Z }_0 \varOmega )^L (\mathcal{Z }_0 \varOmega )^P \nonumber \\&\, + 4 F_{JKL} (\mathcal{Z }_0 \varOmega )^K (\mathcal{Z }_0 \varOmega )^L{}_{P} (\mathcal{Z }_0 {\varOmega })^{P}\nonumber \\&\,- 4 F_{JKL} (\mathcal{Z }_0 \varOmega )^K (\mathcal{Z }_0 \varOmega )^L{}_{\bar{P}} (\mathcal{\bar{Z} }_0 {\bar{\varOmega }})^{\bar{P}} \nonumber \\&\, - 2 F_{JKL} \mathcal{Z }_0^{LP} F_{PQS} (\mathcal{Z }_0 \varOmega )^K (\mathcal{Z }_0 \varOmega )^Q (\mathcal{Z }_0 \varOmega )^S\nonumber \\&\,+ 2 {\bar{F}}_{\bar{K} \bar{L} \bar{P}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{K}}{}_J (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{L}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}} \nonumber \\&\, - 2 \varOmega _{JKL} (\mathcal{Z }_0 \varOmega )^K (\mathcal{Z }_0 \varOmega )^L- 4 \varOmega _{KL} (\mathcal{Z }_0 \varOmega )^K{}_J (\mathcal{Z }_0 \varOmega )^L \nonumber \\&\, - 2 \varOmega _{J \bar{K} \bar{L}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{K}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{L}} - 4 \varOmega _{\bar{K} \bar{L}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{K}}{}_J (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{L}}\nonumber \\&\, + 4 \varOmega _{JK \bar{L}} (\mathcal{Z }_0 \varOmega )^K (\bar{\mathcal{Z }_0 } \bar{\varOmega })^{\bar{L}} + 4 \varOmega _{K \bar{L}} (\mathcal{Z }_0 \varOmega )^K{}_J (\bar{\mathcal{Z }_0 } \bar{\varOmega })^{\bar{L}} \nonumber \\&\, + 4 \varOmega _{K \bar{L}} (\mathcal{Z }_0 \varOmega )^K (\bar{\mathcal{Z }_0 } \bar{\varOmega })^{\bar{L}}{}_J \Big ] +\mathcal{O }(\varOmega ^4)\,,\nonumber \\ \tilde{\varOmega }_{IJ}=\;&[\mathcal{S }_0^{-1}]^K{}_I [\mathcal{S }_0^{-1}]^L{}_J \Big [ \varOmega _{KL} -F_{KLM} \,\mathcal{Z }_0^{MN} \varOmega _N \nonumber \\&\, - \mathrm{i } F_{KLP} \mathcal{Z}_0^{PM} F_{MQR} (\mathcal{Z}_0 \varOmega )^{Q} (\mathcal{Z}_0 \varOmega )^R + 2 \mathrm{i } F_{KLP} (\mathcal{Z}_0 \varOmega )^{P}{}_{Q} (\mathcal{Z}_0 \varOmega )^Q \nonumber \\&\, - 2 \mathrm{i } F_{KLP} (\mathcal{Z}_0 \varOmega )^{P}{}_{\bar{Q}} (\bar{\mathcal{Z}}_0 {\bar{\varOmega }})^{\bar{Q}} + \mathrm{i } F_{KLMN} (\mathcal{Z }_0 \varOmega )^M (\mathcal{Z }_0 \varOmega )^N \nonumber \\&\, + \mathrm{i } F_{KMN} (\mathcal{Z }_0 \varOmega )^M{}_L (\mathcal{Z }_0 \varOmega )^N + \mathrm{i } F_{KMN} (\mathcal{Z }_0 \varOmega )^N{}_L (\mathcal{Z }_0 \varOmega )^M \nonumber \\&\, - 2 \mathrm{i } F_{KMN} \mathcal{Z }_0^{MP} F_{PQL} (\mathcal{Z }_0 \varOmega )^Q (\mathcal{Z }_0 \varOmega )^N \nonumber \\&- 2 \mathrm{i } \varOmega _{KLP} (\mathcal{Z }_0 \varOmega )^P - 2 \mathrm{i } \varOmega _{KP} (\mathcal{Z }_0 \varOmega )^P{}_L + 2 \mathrm{i } \varOmega _{KP} \mathcal{Z }_0^{PQ} F_{QLS} (\mathcal{Z }_0 \varOmega )^S \nonumber \\&\,+ 2 \mathrm{i } \varOmega _{KL \bar{P}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}} + 2 \mathrm{i } \varOmega _{K \bar{P}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}}{}_L \Big ] +\mathcal{O }(\varOmega ^3) \,,\nonumber \\ \tilde{\varOmega }_{I\bar{J}}=\;&[\mathcal{S }_0^{-1}]^K{}_I [\bar{\mathcal{S }}_0^{-1}]^{\bar{L}}{}_{\bar{J}} \,\Big [ \varOmega _{K\bar{L}} + 2 \mathrm{i } F_{KMN} (\mathcal{Z }_0 \varOmega )^M{}_{\bar{L}} (\mathcal{Z }_0 \varOmega )^N \nonumber \\&\, - 2 \mathrm{i } {\bar{F}}_{\bar{L} \bar{P} \bar{N}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{N}}{}_{K} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}} \nonumber \\&\, - 2 \mathrm{i } \varOmega _{KM{\bar{L}}} (\mathcal{Z }_0 \varOmega )^M - 2 \mathrm{i } \varOmega _{KM} (\mathcal{Z }_0 \varOmega )^M{}_{\bar{L}} + 2 \mathrm{i } \varOmega _{K \bar{L} \bar{M}} (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{M}} \nonumber \\&\, + 2 \mathrm{i } \varOmega _{K \bar{M} } (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{M}}{}_{\bar{L}} \Big ] +\mathcal{O }(\varOmega ^3) \,, \nonumber \\ {\tilde{\varOmega }}_{IJL}=\;&[\mathcal{S }_0^{-1}]^M{}_I [\mathcal{S }_0^{-1}]^N{}_J [\mathcal{S }_0^{-1}]^K{}_L \left[ \varOmega _{MNK} - F_{MNKP} (\mathcal{Z}_0 \varOmega )^P \right. \nonumber \\&{}- F_{MNP}\left. (\mathcal{Z}_0 \varOmega )^P{}_K - F_{KMP} (\mathcal{Z}_0 \varOmega )^P{}_N - F_{NKP} (\mathcal{Z}_0 \varOmega )^P{}_M \right. \nonumber \\&{}+\left. F_{MNP} \mathcal{Z}_0^{PQ} F_{KQR} (\mathcal{Z}_0 \varOmega )^R + F_{KMP} \mathcal{Z}_0^{PQ} F_{QNR} (\mathcal{Z}_0 \varOmega )^R \right. \nonumber \\&{}+\left. F_{NKP} \mathcal{Z}_0^{PQ} F_{QMR} (\mathcal{Z}_0 \varOmega )^R \right] +\mathcal{O }(\varOmega ^2) \,, \nonumber \\ {\tilde{\varOmega }}_{IJ \bar{K}}=\;&[\mathcal{S }_0^{-1}]^M{}_I [\mathcal{S }_0^{-1}]^N{}_J [\bar{\mathcal{S }}_0^{-1}]^{\bar{L}}{}_{\bar{K}} \left[ \varOmega _{M N \bar{L}} - F_{MNQ} (\mathcal{Z}_0 \varOmega )^Q{}_{\bar{L}} \right] \nonumber \\&\, +\mathcal{O }(\varOmega ^2), \end{aligned}$$
(1.223)

where \((\mathcal{Z }_0 \varOmega )^M = \mathcal{Z }_0^{MN} \varOmega _N \), \((\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{M}} = \bar{\mathcal{Z }}_0^{\bar{M} \bar{N}} {\varOmega }_{\bar{N}} \,,\, (\mathcal{Z }_0 \varOmega )^M{}_{\bar{L}} = \mathcal{Z }_0^{MN} \varOmega _{N \bar{L}} \,,\, (\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}}{}_L = \bar{\mathcal{Z }}_0^{\bar{P} \bar{N}} {\varOmega }_{\bar{N} L}\), \( (\mathcal{Z }_0 \varOmega )^L{}_{\bar{P}} = \mathcal{Z }_0^{LK} \varOmega _{K {\bar{P}}}\), \((\bar{\mathcal{Z }}_0 \bar{\varOmega })^{\bar{P}}{}_{\bar{L}} = \bar{\mathcal{Z }}_0^{\bar{P} \bar{N}} {\varOmega }_{\bar{N} \bar{L}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardoso, G.L., de Wit, B., Mahapatra, S. (2013). Non-holomorphic Deformations of Special Geometry and Their Applications. In: Bellucci, S. (eds) Black Objects in Supergravity. Springer Proceedings in Physics, vol 144. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00215-6_1

Download citation

Publish with us

Policies and ethics