Integrating and Generalising Volunteered Geographic Information

  • Monika SesterEmail author
  • Jamal Jokar Arsanjani
  • Ralf Klammer
  • Dirk Burghardt
  • Jan-Henrik Haunert
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The availability of spatial data on the web has greatly increased through the availability of user-generated community data and geosensor networks. The integration of such multi-source data is providing promising opportunities, as integrated information is richer than can be found in only one data source, but also poses new challenges due to the heterogeneity of the data, the differences in quality and in respect of tag-based semantic modelling. The chapter describes approaches for the integration of official and informal sources, and discusses the impact of integrating user-generated data on automated generalisation and visualisation.


Application Programming Interface Volunteer Geographic Information Object Symbolisation Road Data Output Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alt H, Efrat A, Rote G, Wenk C (2003) Matching planar maps. In: Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms (SODA '03). Society for industrial and applied mathematics. Philadelphia, PA, USA, pp 589–598Google Scholar
  2. Atkinson GM, Wald DJ (2007) “Did you feel it?” intensity data: a surprisingly good measure of earthquake ground motion. Seismol Res Lett 78(3):362–368CrossRefGoogle Scholar
  3. Balley S, Parent C, Spaccapietra S (2004) Modelling geographic data with multiple representations. Int J Geogr Inf Sci 18(4):327–352CrossRefGoogle Scholar
  4. Bereuter P, Weibel R and Burghardt D (2012) Content zooming and exploration for mobile maps. In: Proceedings 15th AGILE international conference on geographic information science, Avignon, FranceGoogle Scholar
  5. Bobzien M, Petzold I, Burghardt D (2007) Automated derivation of a 1:300,000 topographic map from swiss dlm vector 200. In: Proceedings of the international cartographic congress, Moscow, Russia, International cartographic associationGoogle Scholar
  6. Brassel KE, Weibel R (1988) A review and conceptional framework of automated map generalization. Int J Geogr Inf Syst 2(3):224–229Google Scholar
  7. Bröring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, Liang S, Lemmens R (2011) New generation sensor web enablement. Sens Open Access J 11(3):2652–2699Google Scholar
  8. Cao L, Krumm J (2009) From GPS traces to a routable road map. In: 17th ACM SIGSPATIAL International conference on advances in geographic information systems (ACM SIGSPATIAL GIS 2009), November 4-6, 2009. Seattle, WA, pp 3–12Google Scholar
  9. Carver S (2001) Public participation using web-based GIS. Environ Plan B: Plan Des 28(6):803–804. doi: 10.1068/b2806ed
  10. Chen Y, Krumm J (2010) Probabilistic modeling of traffic lanes from GPS traces. In: 18th ACM SIGSPATIAL international conference on advances in geographic information systems (ACM SIGSPATIAL GIS 2010), November 2-5, 2010. San Jose, CAGoogle Scholar
  11. Codescu M, Horsinka G, Kutz O, Mossakowski T, Rau R (2011) OSMonto—an ontology of OpenStreetMap tags. Accessed 27 Feb 2013
  12. Coleman DJ, Geogiadou Y, Labonte J (2009) Volunteered geographic information: the nature and motivation of producers. Int J Spat Data Infrastruct Res 4:332–358Google Scholar
  13. Dahinden T, Sester M (2009) Categorization of linear objects for map generalization using geocoded articles of a knowledge repository. In: Proceedings of the international workshop presenting spatial information: granularity, relevance, and integration, held in conjunction with the conference on spatial information theory, COSITGoogle Scholar
  14. Davies JJ, Beresford AR, Hopper A (2006) Scalable, distributed, real-time map generation. IEEE Pervasive Comput 5(4):47–54CrossRefGoogle Scholar
  15. Dalyot S, Dahinden T, Schulze, MJ, Boljen, J, Sester, M (2012) Geometrical adjustment towards the alignment of vector databases. In: ISPRS annals of photogrammetry, remote sensing and spatial information sciences, vol. I–4, pp. 13–18Google Scholar
  16. Devillers R, Jeansoulin R (2006) Fundamentals of spatial data quality. ISTE, LondonCrossRefGoogle Scholar
  17. Devillers R, Bédard Y, Jeansoulin R, Moulin B (2007) Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data. IJGIS 21(3):261–282Google Scholar
  18. Devogele T, Trevisan J, Raynal L (1996) Building a multiscale database with scale-transition relationships. In: Proceedings of the 7th international symposium on spatial data handling, advances in GIS research II. Delft, The Netherlands, pp 6.19–6.33Google Scholar
  19. Duckham M (2012) Decentralized spatial computing: foundations of geosensor networks. Springer, BerlinGoogle Scholar
  20. Fink M, Haunert JH, Schulz A, Spoerhase J, Wolff A (2012) Algorithms for labeling focus regions. Vis Comput Graph IEEE Trans 18(12):2583–2592CrossRefGoogle Scholar
  21. Fritz S, McCallum I, Schill C, Perger C, See L, Schepaschenko D, Van der Velde M, Kraxner F, Obersteiner M (2012) Geo-Wiki: an online platform for improving global land cover. Environ Model Softw 31:110–123CrossRefGoogle Scholar
  22. Gartner G (2012)—emotional response to space as an additional concept in cartography, international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXIX-B4Google Scholar
  23. Gervais M, Bedard Y, Levesque M, Bernier E, Devillers R (2009) Data quality issues and geographic knowledge discovery, pp 99–116Google Scholar
  24. Girres JF, Touya G (2010) Quality assessment of the French OpenStreetMap dataset. Trans GIS 14(4):435–459CrossRefGoogle Scholar
  25. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69:211–221CrossRefGoogle Scholar
  26. Goodchild MF, Li L (2012) Assuring the quality of volunteered geographic information. Spat Stat 1:110–120CrossRefGoogle Scholar
  27. Grünreich D (1992) ATKIS—a topographic information system as a basis for GIS and digital cartography in Germany. In: Vinken R (ed) From digital map series in geosciences to geo-information systems. Geologisches Jahrbuch, Federal institute of geosciences and resources, Hannover, vol A(122), pp 207–216Google Scholar
  28. Guptill SC, Morrison J (1995) Elements of spatial data quality. Elsevier Science, New YorkGoogle Scholar
  29. Hahmann S, Burghardt D (2010) Linked data—a multiple representation database at web scale? In: Proceedings of the 13th ICA workshop on generalisation and multiple representation, Zurich, SwitzerlandGoogle Scholar
  30. Haklay M (2010) How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ Plann B: Plann Des 37(4):682–703CrossRefGoogle Scholar
  31. Haklay M, Basiouka S, Antoniou V, Ather A (2010) How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. Cartographic J 47(4):315–322CrossRefGoogle Scholar
  32. Hampe M, Sester M, Harrie L (2004) Multiple representation databases to support visualisation on mobile devices, international archives of photogrammetry and remote sensing, vol 35. Istanbul, TurkeyGoogle Scholar
  33. Haunert JH, Budig B (2012) An algorithm for map matching given incomplete road data. In: Proceedings of the 20th ACM SIGSPATIAL international conference on advances in geographic information systems (ACM-GIS’12), pp 510–513Google Scholar
  34. Heipke C (2010) Crowdsourcing geospatial data. ISPRS J Photogrammetry Remote Sens 65(6):550–557. doi: 10.1016/j.isprsjprs.2010.06.005 Google Scholar
  35. Helbich M, Amelunxen C, Neis P (2012) Comparative spatial analysis of positional accuracy of openstreetmap and proprietary geodata. Int. GI_Forum 2012. Salzburg, AustriaGoogle Scholar
  36. Henson C, Pschorr J, Sheth A, Thirunarayan K (2009) SemSOS semantic sensor observation service. International symposium on collaborative technologies and systemsGoogle Scholar
  37. Hollenstein L, Purves R (2010) Exploring place through user-generated content: using Flickr tags to describe city cores. J Spat Inf Sci 1(2010):21–48Google Scholar
  38. Jaara K, Duchêne C, Ruas A (2011) Toward the generalisation of cartographic mashups: taking into account the dependency between the thematic data and the reference data throughout the process of automatic generalisation, 14th ICA workshop on generalisation and multiple representation, Paris, France, 30 June–1 July 2011Google Scholar
  39. Jokar Arsanjani J, Barron C, Bakillah M, Helbich M (2013a) Assessing the quality of OpenStreetMap contributors together with their contributions. In: Proceedings of the 16th AGILE conference, Leuven, BelgiumGoogle Scholar
  40. Jokar Arsanjani J, Helbich M, Bakillah M, Hagenauer J, Zipf A (2013b) Towards mapping land use patterns from volunteered geographic information. Int J Geogr Inf Sci. doi: 10.1080/13658816.2013.800871 Google Scholar
  41. Jones CB, Purves P, Clough D, Joho H (2008) Modelling vague places with knowledge from the web. Int J Geogr Inf Sci 22(10):1045–1065CrossRefGoogle Scholar
  42. Kieler B, Huang W, Haunert JH, Jiang J (2009) Matching river datasets of different scales. Advances in GIScience. In: Proceedings of 12th AGILE conference on GIScience, lecture notes in Geoinformation and cartography, Springer, Berlin, pp 135–154Google Scholar
  43. Kilpeläinen T (1992) Multiple representations and knowledge-based generalization of topographical data. In: Waugh TC, Healey RG (eds) Advances in GIS research. In: Proceedings of the 6th international symposium on spatial data handling, IGU commission on GIS and association for geographic information, Edinburgh, GB, pp 882–893Google Scholar
  44. Kinkeldey C, Schiewe J (2012) Visualisierung thematischer Unsicherheiten mit “noise annotation lines”. Kartographische Nachrichten 62(5):241–249Google Scholar
  45. Lüscher P, Weibel R (2013) Exploiting empirical knowledge for automatic delineation of city centres from large-scale topographic databases. Comput Environ Urban Syst 37:18–34. doi: 10.1016/j.compenvurbsys.2012.07.001 CrossRefGoogle Scholar
  46. MacEachren AM (1992) Visualizing uncertain information. In: cartographic perspectives, vol 13, p 10Google Scholar
  47. Mackaness W, Ruas A, Sarjakoski T (2007) Generalisation of geographic information: cartographic modelling and applications. Oxford, ElsevierGoogle Scholar
  48. Mackaness WA, Chaudhry O (2013) Assessing the veracity of TF-IDF for extracting place semantics from Flickr tags transactions in GIS (in press)Google Scholar
  49. McMaster RB, Shea KS (1992) Generalization in digital cartography. Association of American Geographers, WashingtonGoogle Scholar
  50. Mondzech J, Sester M (2011) Quality analysis of OpenStreetMap data based on application needs. Cartographica 46(2):115–125CrossRefGoogle Scholar
  51. Mustière S, Devogele T (2008) Matching networks with different levels of detail. GeoInformatica 12(4):435–453CrossRefGoogle Scholar
  52. Neis P, Zielstra D, Zipf A (2012) The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet 4(1):1–21Google Scholar
  53. Newson P and Krumm J (2009) Hidden markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems (GIS ‘09), pp 336–343Google Scholar
  54. Noy N (2004) Semantic integration: a survey of ontology based approaches. SIGMOD Rec 33:65–70Google Scholar
  55. Paelke V, Dahinden T, Eggert D, Mondzech J (2012) Location based context awareness through tag‐cloud visualizations. Adv Geo‐Spatial Inf Sci (CRC Press)Google Scholar
  56. Poser K, Dransch D (2010) Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 64(1):89–98Google Scholar
  57. Quddus MA, Ochieng WY, Noland RB (2007) Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp Res Part C: Emerg Technol 15(5):312–328CrossRefGoogle Scholar
  58. Rabiner LR, Juang BH (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3(1):4–15CrossRefGoogle Scholar
  59. Rak A, Coleman D, Nichols S (2012) Legal liability concerns surrounding volunteered geographic information applicable to Canada. In: Rajabifard, A, Coleman D (eds) Spatially enabling government, industry and citizens, USA: GSDI Association Press, pp 125–143.
  60. Rambaldi G, Mccall M, Weiner D, Mbile P, Kyem P (2004) Participatory GIS.
  61. Ramm F (2012) Am Puls der Zeit—Minütliche updates bei OpenStreetMap. Paper presented at the FOSSGIS 2012, DessauGoogle Scholar
  62. Ramm F, Topf J, Chilton S (eds) (2010) OpenStreetMap: using and enhancing the free map of the world. UIT Cambridge, CambridgeGoogle Scholar
  63. Roick O, Heuser S (2013) Location based social networks—definition, current state of the art and research agenda. Trans GIS. doi: 10.1111/tgis.12032 Google Scholar
  64. Rouse LJ, Bergeron SJ, Harris TM (2007) Participating in the geospatial web: collaborative mapping, social networks and participatory GIS. In: Scharl A, Tochtermann K (eds) The Geospatial Web. Springer, London, pp 153–158. Retrieved from
  65. Safra E, Doytsher Y (2006) Integration of multiple geo-spatial datasets. ASPRS 2006 annual conference, Reno, NevadaGoogle Scholar
  66. Samet H (eds) (2005) Foundations of multidimensional and metric data structures. The Morgan Kaufmann series in computer graphics and geometric modeling. Morgan Kaufmann Publishers Inc. San Francisco, CA, USAGoogle Scholar
  67. Sayda F (2005) Involving LBS users in data acquisition and update. In: Proceedings of the AGILE, PortugalGoogle Scholar
  68. Schroedl S, Wagstaff K, Rogers S, Langley P, Wilson C (2004) Mining GPS traces for map refinement. Data Min Knowl Disc 9(1):59–87CrossRefGoogle Scholar
  69. Scofield RP, Christie D, Sagar PM, Sullivan B (2012) eBird and avifaunal monitoring by the ornithological society of New Zealand. NZ J Ecol 36:279–286Google Scholar
  70. Senaratne H, Gerharz L (2011) An assessment and categorisation of quantitative uncertainty visualisation methods. The 14th AGILE international conference on geographic information science, Utrecht, Netherlands, 18–21 April 2011Google Scholar
  71. Sengstock C, Gertz M (2012) Latent geographic feature extraction from social media. In: Proceedings of the 20th ACM SIGSPATIAL international conference on advances in geographic information systems, Redondo BeachGoogle Scholar
  72. Sheeren D, Mustière S, Zucker JD (2009) A data-mining approach for assessing consistency between multiple representations in spatial databases. Int J Geogr Inf Sci 23(8):961–992CrossRefGoogle Scholar
  73. Siebritz L, Sithole G, Zlatanova S (2012) Assessment of the homogeneity of volunteered geographic information in South Africa. In: international archives of the photogrammetry, remote sensing and spatial information sciences, vol 39-B4. XXII ISPRS Congress, Melbourne, AustraliaGoogle Scholar
  74. Siriba DN, Dalyot S, Sester M (2012) Geometric quality enhancement of legacy graphical cadastral datasets through thin plate splines transformation. Surv Revi 44(325):91–101Google Scholar
  75. Slingsby A, Dykes J, Wood J, Clarke K (2007) Mashup cartography: cartographic issues of using Google earth for tag maps. ICA commission on maps and the internet, ICA, Warsaw, Poland, pp 79–93Google Scholar
  76. Smart PD, Quinn JA, Jones CB (2011) City model enrichment. ISPRS J Photogram Remote Sens 6(2):223–234CrossRefGoogle Scholar
  77. Stefanidis A, Nittel S (2004) Geosensor networks. CRC Press, Boca RatonGoogle Scholar
  78. Stigmar H (2005) Matching route data and topographic data in a real-time environment. In: Hauska H, Tveite H (eds) ScanGIS’2005—proceedings of the 10th scandinavian research conference on geographical information sciences, Stockholm, Sweden, pp 89–107Google Scholar
  79. Stoter JE, Meijers M, van Oosterom P, Grünreich D, Kraak MJ (2010) Applying DLM and DCM concepts in a multi—scale data environment. Paper presented at GDI 2010: a symposium on generalization and data integration, Boulder, USA, 20–22 June 2010Google Scholar
  80. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142(10):2282–2292CrossRefGoogle Scholar
  81. Surowiecki J (ed) (2004) The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies. Societies and Nations Little, DoubledayGoogle Scholar
  82. Tauscher S, Neumann K (2012) Combining web map services and opinion mining to generate sentiment maps of touristic locations, symposium on service oriented mapping, Wien, JOBSTMedia Präsentation Management Verlag, pp 277–286, 11/2012Google Scholar
  83. Touya G (2012) What is the level of detail of OpenStreetMap? Role of volunteered geographic information in advancing science: quality and credibility. In: conjunction with GIScience 2012, 18 Sept 2012Google Scholar
  84. van Oort P (2006) Spatial data quality: from description to application. PhD Thesis, Wageningen University, The NetherlandsGoogle Scholar
  85. Volz S (2005) Data-driven Matching of Geospatial Schemas. In: Cohn AG, Mark DM (eds) Spatial information theory. Proceedings of the international conference on spatial information theory (COSIT '05), Ellicottville, NY. Lecture Notes in Computer Science 3693, pp. 115–132Google Scholar
  86. Walter V, Fritsch D (1999) Matching spatial data sets: a statistical approach. Int J Geogr Inf Sci 13(5): 445–473Google Scholar
  87. Warneke H, Schäfers M, Lipeck U, Bobrich J (2011) Matching-based map generalization by transferring geometric representations. In: Proceedings Geoinformatik 2011, Münster, pp 71–77Google Scholar
  88. Weibel R, Dutton G (2005) Generalizing spatial data and dealing with multiple representations. In: Longley P, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems: principles, techniques, management and applications, 2nd edn (Abridged Edition). WileyGoogle Scholar
  89. Yates D, Paquette S (2011) Emergency knowledge management and social media technologies: a case study of the 2010 Haitian earthquake. Int J Inf Manage 31(1):6–13CrossRefGoogle Scholar
  90. Yuan S, Tao C (1999) Development of conflation components. In: Proceedings of the international conference on geoinformatics and socioinformatics. Ann Arbor, MI, pp 1–12.
  91. Zhang Y, Yang B, Luan X (2012) Automated matching crowdsourcing road networks using probabilistic relaxation. In: ISPRS annals of photogrammetry, remote sensing and spatial information sciences, vol 1–4Google Scholar
  92. Zook M, Graham M, Shelton T, Gorman S (2010) Volunteered geographic information and crowdsourcing disaster relief: a case study of the haitian earthquake. World Med Health Policy 2:7–33. doi: 10.2202/1948-4682.1069

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Monika Sester
    • 1
    Email author
  • Jamal Jokar Arsanjani
    • 2
  • Ralf Klammer
    • 3
  • Dirk Burghardt
    • 3
  • Jan-Henrik Haunert
    • 4
  1. 1.Institute of Cartography and GeoinformaticsLeibniz Universität HannoverHannoverGermany
  2. 2.GIScience research group, Institute of GeographyUniversity of HeidelbergHeidelbergGermany
  3. 3.Institute of CartographyDresden University of TechnologyDresdenGermany
  4. 4.Institute of Geoinformatics and Remote SensingUniversity of OsnabrückOsnabrückGermany

Personalised recommendations