Modelling Geographic Relationships in Automated Environments

  • Guillaume TouyaEmail author
  • Bénédicte Bucher
  • Gilles Falquet
  • Kusay Jaara
  • Stefan Steiniger
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Automated processes such as cartographic generalisation require formal abstraction of the geographic space in order to analyse, process and transform it. Spatial relations are key to understanding geographic space and their modelling is a critical issue. This chapter reports on existing classifications and modelling frameworks for spatial relations. A generic model is proposed for building an ontology of spatial relations for automatic processes such as generalisation or on-demand mapping, with a focus on so-called multiple representation relations. Propositions to use such ontology in an automated environment are reported. The three use cases of the chapter describe recent research that uses relations modelling. The first use case is the extension of CityGML with relations for 3D city models. The second use case presents the use of spatial relations for automatic spatial analysis, and particularly the grouping of natural features such as lakes or islands. Finally, the third use case is a data migration model guided by relations that govern the positioning of thematic data upon changing reference data.


Binary Relation Spatial Relation Generalisation Process Thematic Data Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amorim JH, Valente J, Pimentel C, Miranda AI, Borrego C (2012) Detailed modelling of the wind comfort in a city avenue at the pedestrian level. Usage, usability, and utility of 3D city models, NantesGoogle Scholar
  2. Balley S, Jaara K, Regnauld N (2012) Towards a prototype for deriving custom maps from multisource data. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, TurkeyGoogle Scholar
  3. Bejaoui L, Pinet F, Bedard Y, Schneider M (2009) Qualified topological relations between spatial objects with possible vague shape. Int J Geogr Inf Sci 23(7):877–921CrossRefGoogle Scholar
  4. Bertin J (1983) Semiology of graphics: diagrams, networks, maps. University of Wisconsin Press, MadisonGoogle Scholar
  5. Billen R, Zaki CE, Servières M (2012) Developing an ontology of space: application to 3D city modeling. In: Leduc T, Moreau G, Billen R (eds) Usage, usability, and utility of 3D city modelsGoogle Scholar
  6. Borrmann A, Rank E (2009) Specification and implementation of directional operators in a 3D spatial query language for building information models. Adv Eng Inform 23(1):32–44. doi: 10.1016/j.aei.2008.06.005 CrossRefGoogle Scholar
  7. Brando C, Bucher B, Abadie A (2011) Specifications for user generated spatial content. In: Geertman S, Reinhardt W, Toppen F (eds) Advancing geoinformation science for a changing world, vol 1. Springer, Heidelberg, pp 479–495CrossRefGoogle Scholar
  8. Brans JP, Mareschal B (2005) Promethee methods. In: Figueira J, Greco S, Ehrogott M (eds) Multiple criteria decision analysis: state of the art surveys. international series in operations research and management science, vol 78. Springer, New York, pp 163–186. doi: 10.1007/0-387-23081-5_5
  9. Brasebin M, Perret J, Haëck C (2011) Towards a 3D geographic information system for the exploration of urban rules: application to the French local urban planning schemes. In: 28th urban data management symposium (UDMS 2011)Google Scholar
  10. Brassel KE, Weibel R (1988) A review and conceptual framework of automated map generalization. Int J Geogr Inf Syst 2(3):229–244. doi: 10.1080/02693798808927898 CrossRefGoogle Scholar
  11. Bucher B, Falquet G, Clementini E, Sester M (2012) Towards a typology of spatial relations and properties for urban applications. In: Leduc T, Moreau G, Billen R (eds) Proceedings of usage, usability and utility of 3D city models, COST TU0801 final conference, EDP Sciences, NantesGoogle Scholar
  12. Burghardt D, Schmid S, Stoter J (2007) Investigations on cartographic constraint formalisation. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, RussiaGoogle Scholar
  13. Burghardt D, Petzold I, Bobzien M (2010) Relation modelling within multiple representation databases and generalisation services. Cartographic J 47(3):238–249. doi: 10.1179/000870410X12699418769035 CrossRefGoogle Scholar
  14. Caneparo L, Collo M, di Giannantonio D, Lombardo V, Montuori A, Pensa S (2007) Generating urban morphologies from ontologies. In: 2nd workshop COST action C21—towntology.
  15. Chaudhry OZ, Mackaness WA (2007) Utilising partonomic information in the creation of hierarchical geographies. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, RussiaGoogle Scholar
  16. Chaudhry OZ, Mackaness WA, Regnauld N (2009) A functional perspective on map generalisation. Comput Environ Urban Syst 33(5):349–362CrossRefGoogle Scholar
  17. Clementini E (2010) Ontological impedance in 3D semantic data modeling. In: Kolbe TH, König G, Nagel C (eds) Proceedings of 5th 3D geoinfo conference, Berlin, ISPRS, pp 97–100Google Scholar
  18. Cohn AG, Hazarika SM (2001) Qualitative spatial representation and reasoning: an overview. Fundam Inf 46(1–2):1–29Google Scholar
  19. Corcoran P, Mooney P, Bertolotto M (2012) Spatial relations using high level concepts. ISPRS Int J Geo-Inf 1(3):333–350. doi: 10.3390/ijgi1030333 CrossRefGoogle Scholar
  20. Duchêne C, Ruas A, Cambier C (2012) The cartACom model: transforming cartographic features into communicating agents for cartographic generalisation. Int J Geogr Inf Sci 26(9):1533–1562. doi: 10.1080/13658816.2011.639302 CrossRefGoogle Scholar
  21. Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174. doi: 10.1080/02693799108927841 CrossRefGoogle Scholar
  22. Fisher-Gewirtzman D (2012) 3D models as a platform for urban analysis and studies on human perception of space. Usage, usability, and utility of 3D city models. NantesGoogle Scholar
  23. Gould N, Chaudhry O (2012) An ontological approach to on-demand mapping. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, TurkeyGoogle Scholar
  24. Jaara K, Duchêne C, Ruas A (2012) A model for preserving the consistency between topographic and thematic layers throughout data migration. In: Proceedings of 15th international symposium on spatial data handling (SDH’12), BonnGoogle Scholar
  25. Jaara K, Duchêne C, Ruas A (2013) Preservation and modification of relations between thematic and topographic data throughout thematic data migration process. In: Cartography from pole to pole: selected contributions to the 26th international cartographic conference 2013, Springer, DresdenGoogle Scholar
  26. Jones C (1997) Geographical information systems and computer cartography. Prentice Hall, New JeresyGoogle Scholar
  27. Kolbe TH, Gröger G, Plümer L (2005) CityGML: interoperable access to 3D city models. In: van Oosterom P, Zlatanova S, Fendel EM (eds) Geo-information for disaster management. Springer, Berlin, pp 883–899CrossRefGoogle Scholar
  28. Li Z, Yan H, Ai T, Chen J (2004) Automated building generalization based on urban morphology and gestalt theory. Int J Geogr Inf Sci 18(5):513–534. doi: 10.1080/13658810410001702021 CrossRefGoogle Scholar
  29. Mackaness WA, Chaudhry OZ (2011) Automatic classification of retail spaces from a large scale topographic database. Trans GIS 15(3):291–307. doi: 10.1111/j.1467-9671.2011.01259.x CrossRefGoogle Scholar
  30. Mackaness WA, Edwards G (2002) The importance of modelling pattern and structure in automated map generalisation. In: Proceedings of the joint ISPRS/ICA workshop on multi-scale representations of spatial data, pp 7–8Google Scholar
  31. Mathet Y (2000) New paradigms in space and motion: a model and an experiment. In: Proceedings of the ECAI 2000 workshop on current issues in spatio-temporal reasoning, BerlinGoogle Scholar
  32. Matsakis P, Wawrzyniak L, Ni J (2008) Relative positions in words: a system that builds descriptions around allen relations. Int J Geogr Inf Sci 24(1):1–23. doi:  10.1080/13658810802270587 CrossRefGoogle Scholar
  33. McMaster RB, Shea KS (1988) Cartographic generalization in digital environment: a framework for implementation in a GIS. In: GIS/LIS’88, pp 240–249Google Scholar
  34. Mustière S, Moulin B (2002) What is spatial context in cartographic generalisation? In: Joint International Symposium and Exhibition on Geospatial Theory, Processing and Applications. ISPRS & SIS, vol 34. pp 274–278Google Scholar
  35. OGC (2012) OGC city geography markup language (CityGML) encoding standard, v2.0.0, OGC project document OGC12-019. In: Gröger G, Kolbe T, Nagel C, Häfele K-H (eds)Google Scholar
  36. Papadias D, Theodoridis Y (1997) Spatial relations, minimum bounding rectangles, and spatial data structures. Int J Geogr Inf Sci 11(2):111–138. doi: 10.1080/136588197242428 CrossRefGoogle Scholar
  37. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Proceedings of 3rd international conference on knowledge representation and reasoning, Morgan Kaufmann, Burlington, Massachusetts, USA Google Scholar
  38. Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. Ph.D. dissertation, Université de Marne-la-ValléeGoogle Scholar
  39. Ruas A, Duchêne D (2007) A prototype generalisation system based on the multi-agent system paradigm. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) The generalisation of geographic information: models and applications, Elsevier, pp 269–284 (Chapter 14)Google Scholar
  40. Steiniger S, Hay GJ (2008) An experiment to assess the perceptual organization of polygonal objects. In: Klippel A, Hirtle S (eds) You-are-here-maps—creating a sense of place through map-like representation, spatial cognition 2008, Freiburg, pp 38–44Google Scholar
  41. Steiniger S, Burghart D, Weibel R (2006) Recognition of island structures for map generalization. In: GIS ‘06 Proceedings of the 14th annual ACM international symposium on advances in geographic information systems, Arlington, Virginia, pp 67–74. doi: 10.1145/1183471.1183484
  42. Steiniger S, Weibel R (2007) Relations among map objects in cartographic generalization. Cartography Geogr Inf Sci 34(3):175–197CrossRefGoogle Scholar
  43. Touya G, Duchêne C, Ruas A (2010) Collaborative generalisation: Formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In: Fabrikant S, Reichenbacher T, van Kreveld M, Schlieder C (eds) Geographic information science. Lecture notes in computer science, vol 6292. Springer, Heidelberg, pp 264–278Google Scholar
  44. Touya G, Balley S, Duchêne C, Jaara K, Regnauld N, Gould N (2012) Towards an ontology of generalisation constraints and spatial relations. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, TurkeyGoogle Scholar
  45. Trinh TH, Chevaillier P, Barange M, Soler J, Loor PD, Querrec R (2011) Integrating semantic directional relationships into virtual environments: a meta-modelling approach. In: Coquillart S, Steed A, Welch G (eds) JVRC11: joint virtual reality conference of EGVE—EuroVR, Nottingham, pp 67–74Google Scholar
  46. Wertheimer M (1938) Laws of organization in perceptual forms. In: Ellis W (eds) A source book of Gestalt psychology, Routledge and Kegan Paul, London, pp 71–88 (English edn )Google Scholar
  47. Williams EA, Wentz EA (2008) Pattern analysis based on type, orientation, size, and shape. Geogr Anal 40(2):97–122CrossRefGoogle Scholar
  48. Winter S (2000) Uncertain topological relations between imprecise regions. Int J Geogr Inf Sci 14(5):411–430CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillaume Touya
    • 1
    Email author
  • Bénédicte Bucher
    • 1
  • Gilles Falquet
    • 2
  • Kusay Jaara
    • 1
  • Stefan Steiniger
    • 3
  1. 1.Laboratoire COGITIGNSaint-MandéFrance
  2. 2.Centre for Computer ScienceUniversity of GenevaGenevaSwitzerland
  3. 3.Geomatics EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations