Advertisement

Map Specifications and User Requirements

  • Sandrine BalleyEmail author
  • Blanca Baella
  • Sidonie Christophe
  • Maria Pla
  • Nicolas Regnauld
  • Jantien Stoter
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In traditional generalisation flow lines, the target map is specified upstream, manually, by cartographers and is intended to answer generic, well-identified user needs. In the emerging context of on-demand mapping, maps have to be derived automatically for users whose requirements are not known in advance, and who may need to integrate their own data. The definition of suitable target map specifications thus becomes part of the service, which raises challenges that are explored in this chapter. The first challenge is to set up a formal map specifications model, rich enough to guide the whole map derivation process. The second challenge is to collect requirements and to assist the user, who is not supposed to be a map designer, in the specification of a map usable for their task and one that respects cartographic standards.

Keywords

User Requirement Geographic Concept Famous Painting Automate Generalisation Cycling Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abadie N (2009) Formal specifications to automatically identify heterogeneities. In: Proceedings of the 12th international conference on geographic information science AGILE, pre-conference workshop “challenges in spatial data harmonisation”, Hannover, 2–5 June 2009Google Scholar
  2. Abadie N, Mechouche A, Mustière S (2010) OWL-based formalisation of geographic databases specifications. In: Proceedings of the 17th international conference on knowledge engineering and knowledge management, Lisbon, 11–15 Oct 2010Google Scholar
  3. Balley S (2007) Aide a la restructuration de donnees geographiques sur le Web—Vers la diffusion a la carte d’information geographique. PhD Thesis, Université Paris EstGoogle Scholar
  4. Balley S, Regnauld N (2011) Collaborating for better on-demand mapping. In: Proceedings of the 14th ICA workshop on generalisation and multiple representation, jointly organised with ISPRS commission II/2 working group on multiscale representation of spatial data, Paris, France, 2011Google Scholar
  5. Balley S, Jaara K, Regnauld N (2012) Towards a prototype for deriving custom maps from multisource data. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey, 2012Google Scholar
  6. Battye E (2010) Conceptualising space project: final report. Ordnance Survey Great Britain Research, unpublishedGoogle Scholar
  7. Beard K (1991) Constraints on rule formation. In: McMaster R, Buttenfield B (eds) Map generalization: making rules for knowledge representation. Longman Group, UK, pp 121–135Google Scholar
  8. Bertin J (1967) Sémiologie Graphique. Gauthier-Villars, Paris. English edition: Bertin J (1983) Semiology of Graphics (trans: William JB). University of Wisconsin Press,WisconsinGoogle Scholar
  9. Brewer CA (1997) Spectral schemes: controversial color use on maps. Cartography Geogr Inf Syst 24(4):203–220CrossRefGoogle Scholar
  10. Brewer CA (2003) A transition in improving maps: the Colorbrewer example. Cartography Geogr Inf Sci 30(2):159–162CrossRefGoogle Scholar
  11. Brewer CA, Buttenfield BP (2010) Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping. Geoinformatica 14(2):221–239CrossRefGoogle Scholar
  12. Bucher B, Buard E, Jolivet L, Ruas A (2007) The need for web legend services. In: Ware JM, Taylor GE (eds) Web and wireless geographical information systems. 7th International Symposium W2GIS, Cardiff, 28–29 (2007) Lecture Notes in Computer Science, vol 4857. Springer, Heidelberg, pp 44–60Google Scholar
  13. Burghardt D, Schmid S, Stoter J (2007) Investigations on cartographic constraint formalisation. In: Proceedings of the 11th ICA Workshop on Generalisation and Multiple Representation, Moscow, Russia, 2007Google Scholar
  14. Cecconi A (2003) Integration of generalisation and multi-scale databases for enhanced web mapping. PhD Thesis, University of ZurichGoogle Scholar
  15. Chesneau E (2007) Improvement of colour contrasts in maps: application to risk maps. In: Proceedings of the 10th International Conference on Geographic Information Science AGILE, Aalborg, 8–11 May 2007Google Scholar
  16. Christophe S (2009) Aide à la conception de légendes personnalisées et originales: Proposition d’une méthode coopérative pour le choix des couleurs. PhD Thesis, Université Paris EstGoogle Scholar
  17. Christophe S (2011) Creative colours specification based on knowledge (ColorLegend System). Special issue: ICC Paris 2011. Cartographic J 48(2):138–145CrossRefGoogle Scholar
  18. Christophe S, Perret J, Hoarau C (2013) Extraction de palettes de couleurs pour l’aide à la conception cartographique. Revue des Sciences et Technologies de l’Information (in press)Google Scholar
  19. Dhée F (2011) Amélioration des cartes topographiques pour les daltoniens. In: Proceedings of the 25th international cartographic conference ICC, Paris, 3–8 July 2011Google Scholar
  20. Dominguès C, Bucher B (2006) Legend design based on map samples. In: Proceedings of the 4th international conference on geographic information science GIScience, Münster, 20–23 Sep 2006, pp 55–59Google Scholar
  21. Dominguès C, Christophe S, Jolivet L (2009) Connaissances opérationnelles pour la conception automatique de légendes de cartes. In: Actes des 20èmes Journées Francophones d’Ingénierie des Connaissances, Hamamet, 25–29 May 2009Google Scholar
  22. Duchêne C, Christophe S, Ruas A (2011) Generalisation, symbol specification and map evaluation: feedback from research done at COGIT laboratory, IGN France. Special issue: validation of EO-derived information for crisis management: a digital earth perspective in the Valgeo expert community. Int J Digital Earth 4(1):25–41CrossRefGoogle Scholar
  23. Foerster T, Lehto L, Sarjakoski T, Sarjakoski T, Stoter J (2010) Map generalization and schema transformation of geospatial data combined in a Web Service context. Comput Environ Urban Syst 34(1):79–88CrossRefGoogle Scholar
  24. Fonsesca FT (2001) Ontology-Driven Geographic Information Systems. PhD Thesis, University of MaineGoogle Scholar
  25. Forrest D (1999) Developing rules for map design: a functional specificationfor a cartographic-design expert system. Cartographica 36(3):31–52CrossRefGoogle Scholar
  26. Gaffuri J (2011) Improving Web mapping with generalization. Special issue: internet mapping: selected papers from the 25th conference of the international cartographic association, Paris, 3–8 July 2011. Cartographica 46(2):83–91CrossRefGoogle Scholar
  27. Gesbert N (2005) Étude de la formalisation des spécifications de bases de données géographiques en vue de leur intégration. PhD Thesis, Université Paris EstGoogle Scholar
  28. Gnägi HR, Morf A, Staub P (2006) Semantic interoperability through the definition of conceptual model transformations. In: Proceedings of the 9th international conference on geographic information science AGILE, Visegrad, 20–22 Apr 2006Google Scholar
  29. Gődér G (2003) Représentation comparée de schémas et de spécifications de contenu. Mémoire de DESS de Cartographie et d’Information Géographique, Université Paris Est Google Scholar
  30. Gould NM, Chaudhry O (2012) An ontological approach to on-demand mapping. In: Proceedings of the 15th ICA Workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey, 2012Google Scholar
  31. Gruber T (1993) A Translation Approach to Portable Ontologies. Knowl Acquisition 5(2):199–220CrossRefGoogle Scholar
  32. Haklay M (ed) (2010) Interacting with geospatial technologies. Wiley, ChichesterGoogle Scholar
  33. Harding J (2011) Usability of geographic information: factors identified from task-focused user interviews. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  34. Harding J, Sharples S, Hakla M, Burnett G, Dadashi Y, Forrest D, Maguire M, Parker CJ, Ratcliffe L (2009) Usable geographic information—what does it mean to users? In: Proceedings of AGI Geo-community, Stratford Upon Avon, 23–24 Sept 2009Google Scholar
  35. Harrie L, Weibel R (2007) Modelling the overall process of generalisation. In: Ruas A, Sarjakoski LT (eds) Generalisation of geographic information: cartographic modelling and application. Elsevier, Amsterdam, pp 67–87CrossRefGoogle Scholar
  36. Hoarau C (2011) Reaching a compromise between contextual constraints and cartographic rules: application to sustainable maps. Cartography Geogr Inf Soc J 38(2):79–88CrossRefGoogle Scholar
  37. Hoarau C, Mustière S (2011) GeOxygene, ‘Semiology’ Plugin—Base model for works on map legends in GeOxygene. http://oxygene-project.sourceforge.net/doc/geoxygene-semiology-0.4.pdf. Accessed 29 May 2013
  38. Hubert F, Ruas A (2003) A method based on samples to capture user needs for generalisation. In: Proceedings of the 7th ICA workshop on progress in automated map generalization, Paris, France, 2003Google Scholar
  39. Inspire Drafting Team on Data Specifications (2008) Deliverable D2.6: methodology for the development of data specifications. http://inspire.jrc.ec.europa.eu/reports/-ImplementingRules/inspireDataspecD2_6v2.0.pdf. Accessed 29 May 2013
  40. ISO TC211 (2005) 19131 Geographic information: data product specification. International StandardGoogle Scholar
  41. ISO TC211 (2009) 19123 Geographic information: Feature concept dictionaries and registers. International StandardGoogle Scholar
  42. Jaara K, Duchêne C, Ruas A (2012) A model for preserving the consistency between topographic and thematic layers throughout data migration. In: Proceedings of the 15th international symposium on spatial data handling sDH, Bonn, 22–24 Aug 2012Google Scholar
  43. Jabeur N (2006) A multi-agent system for on-the-fly web map generation and spatial conflicts resolution. PhD Thesis, Université LavalGoogle Scholar
  44. Jolivet L (2009). Characterizing maps to improve on-demand cartography—the example of European topographic maps. In: Proceedings of the 17th annual conference on GIS reasearch GISRUK, Durham, 1–3 Apr 2009, pp 345–348Google Scholar
  45. Klien E, Lutz M, Kuhn W (2006) Ontology-based discovery of geographic information services—an application in disaster management. Comput Environ Urban Syst 30(1):102–123CrossRefGoogle Scholar
  46. Kuhn W (2003) Semantic Reference Systems. Int J Geogr Inf Sci 17(5):405–409CrossRefGoogle Scholar
  47. Lemmens R (2006) Semantic interoperability of distributed geo-services. PhD Thesis, ITC, University of TwenteGoogle Scholar
  48. Letho L (2007) Real-time content transformations in a web service-based delivery architecture for geographic information. PhD Thesis, Helsinki University of TechnologyGoogle Scholar
  49. Lüscher P, Burghardt D, Weibel R (2007) Ontology-driven enrichment of spatial databases. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, Russia, 2007Google Scholar
  50. Mackaness WA, Ruas A, Sarjakoski LT (2007) Observations and Research Challenges in Map Generalisation and Mutiple Representation. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) Generalisation of Geographic Information: Cartographic Modelling and Applications, Elsevier, pp 315–323Google Scholar
  51. Mechouche A, Abadie N, Prouteau E, Mustière S (2013) Ontology-based formal specifications for user-friendly geospatial data discovery. In: Guillet F, Pinaud B, Zighed DA, Venturini G (eds) Advances in knowledge discovery and management, studies in computational intelligence 471. Springer, Heidelberg, pp 151–176Google Scholar
  52. Ooms K, De Maeyer P, Fack V (2011) Can experts interpret a map’s content more efficiently? In: Proceedings of the 25th international cartographic conference, Paris, 3–8 Jul 2011Google Scholar
  53. Ory J, Christophe S, Fabrikant SI (2013) Identification of styles in topographic maps. In: 16th international cartographic conference, Dresden, 25–30 Aug 2013Google Scholar
  54. Regnauld N (2007) A distributed system architecture to provide on-demand mapping. In: Proceedings of the 11th international cartographic conference, Moscow, 4–10 Aug 2007Google Scholar
  55. Reichenbacher T (2004) Mobile cartography: adaptative visualisation of geographic information on mobile devices. PhD Thesis, Technische Universität MünchenGoogle Scholar
  56. Renard J (2008) Analyse et caractérisation de légendes européennes. Mémoire de stage, Ecole Nationale des Sciences Géographiques Google Scholar
  57. Robinson A (1952) The looks of maps. University of Wisconsin Press, MadisonGoogle Scholar
  58. Robinson A, Morrison JL, Muehrcke PC, Kimerling AJ, Guptill SC (1995) Elements of cartography (6th edn). Wiley, ChichesterGoogle Scholar
  59. Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. PhD Thesis, Université Paris EstGoogle Scholar
  60. Ruas A (2001) Automatic generalisation project: learning process from interactive generalisation. OEEPE official publication 39Google Scholar
  61. Ruas A, Plazanet C (1996) Strategies for automated generalisation. In: Proceedings of the 7th international symposium on spatial data handling SDH, Delft, 12–16 Aug 1996Google Scholar
  62. Sarjakoski LT, Nivala A (2005) Adaptation to context—a way to improve the usability of mobile maps. In: Meng L, Zipf A, Reichenbacher T (eds) Map-based mobile services: theories, methods and implementations. Springer, Heidelberg, pp 107–123CrossRefGoogle Scholar
  63. Sarjakoski T, Sarjakoski LT (2005) The GiMoDig public final report. Public EC report, GiMoDig project, IST-2000-30090Google Scholar
  64. Sarjakoski T, Sarjakoski LT (2007) A real-time generalisation and map adaptation approach for location-based services. In: Mackannes WA, Ruas A, Sarjakoski LT (eds) Generalisation of geographic information: cartographic modelling and applications. Elsevier, Amsterdam, pp 137–159CrossRefGoogle Scholar
  65. Sawahata L (2001) Color harmony workbook. Rockport PublishersGoogle Scholar
  66. Stoter J, Burghardt D, Duchêne C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S (2009a) Methodology for evaluating automated map generalization in commercial software. Comput Environ Urban Syst 33(5):311–324CrossRefGoogle Scholar
  67. Stoter J, van Smaalen J, Bakker N, Hardy P (2009b) Specifying map requirements for automated generalization of topographic data. Cartographic J 46(3):214–227CrossRefGoogle Scholar
  68. Stoter J, Baella B, Blok C, Burghardt D, Duchêne C, Pla M et al (2010) State-of-the art of automated generalisation in commercial software. EuroSDR Official PublicationGoogle Scholar
  69. Touya G (2011) Orchestration d’un processus multi-modèles de généralisation d’espaces géographiques hétérogènes. PhD Thesis, Universite Paris EstGoogle Scholar
  70. Touya G, Duchêne C (2011) Collagen: collaboration between automatic cartographic generalisation processes. In: Ruas A (eds) Advances in cartography and GIScience vol 1, Selection from ICC 2011 Paris. Lecture notes in geoinformation and cartography, Springer, HeidelbergGoogle Scholar
  71. Touya G, Girres J (2013) ScaleMaster2.0: a scalemaster extension to monitor automatic multi-scales generalisations. CaGIS—special Issue ICC 2013 (in press)Google Scholar
  72. Touya G, Duchêne C, Ruas A (2010) Collaborative generalisation: formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In: Proceedings of the 6th international conference GIScience 2010, Zurich, 14–17 Sep 2010Google Scholar
  73. Touya G, Balley S, Duchêne C, Jaara K, Regnauld N, Gould NM (2012) Towards an ontology of generalisation constraints and spatial relations. In: Proceedings of the 15th ica workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey, 2012Google Scholar
  74. Zhang X (2012) Automated evaluation of generalised topographic maps. PhD Thesis, ITC, University of TwenteGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sandrine Balley
    • 1
    Email author
  • Blanca Baella
    • 2
  • Sidonie Christophe
    • 3
  • Maria Pla
    • 2
  • Nicolas Regnauld
    • 1
  • Jantien Stoter
    • 4
  1. 1.Ordnance Survey Great BritainSouthamptonUK
  2. 2.Institut Cartogràfic de CatalunyaBarcelonaSpain
  3. 3.Laboratoire COGITIGNSaint-MandéFrance
  4. 4.Delft University of Technology and Kadaster NLDelftThe Netherlands

Personalised recommendations