Advertisement

Generalisation in Practice Within National Mapping Agencies

  • Cécile DuchêneEmail author
  • Blanca Baella
  • Cynthia A. Brewer
  • Dirk Burghardt
  • Barbara P. Buttenfield
  • Julien Gaffuri
  • Dominik Käuferle
  • François Lecordix
  • Emmanuel Maugeais
  • Ron Nijhuis
  • Maria Pla
  • Marc Post
  • Nicolas Regnauld
  • Lawrence V. Stanislawski
  • Jantien Stoter
  • Katalin Tóth
  • Sabine Urbanke
  • Vincent van Altena
  • Antje Wiedemann
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

National Mapping Agencies (NMAs) are still among the main end users of research into automated generalisation, which is transferred into their production lines via various means. This chapter includes contributions from seven NMAs, illustrating how automated generalisation is used in practice within their partly or fully automated databases and maps production lines, what results are currently being obtained and what further developments are on-going or planned. A contribution by the European Joint Research Center reports on the use of multiple representation and generalisation in the context of the implementation of the European INSPIRE directive. The chapter finishes with a synthesis of recent achievements, as well as future challenges that NMAs have begun to tackle.

Keywords

United States Geological Survey Generalisation Process Model Generalisation Graphical Conflict Spatial Data Infrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank all participants of the NMAs symposium “Designing MRDB and multi-scale DCMs: sharing experience between government mapping agencies” held in Barcelona on 21–22 March 2013 for the rich exchanges they enabled regarding current practices of generalisation and future challenges for NMAs. They represented the NMAs contributing to Sects. 11.211.8 of this chapter, as well as: IGN-Belgium, GST-Denmark (former KMS), NLS-Finland, OSI-Ireland, IGN-Spain.

References

  1. Anderson-Tarver C, Gleason M, Buttenfield BP, Stanislawski LV (2012) Automated centerline delineation to enrich the National Hydrography Dataset. In: Xiao N, Kwan M-P, Goodchild M, Shekhar S (eds) GIScience 2012. 7th international conference on geographic information science, Columbus, September 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, p 15Google Scholar
  2. Arundel ST, Whitaker S, Phillips L, Thiem P (2010) An overview of automatic digital contour production for the USGS US Topo graphics product. Paper presented at AAG annual meeting, Washington DC, 14–18 Apr 2010Google Scholar
  3. Bader M (2001) Energy minimization methods for feature displacement in map generalization. Dissertation (PhD Thesis), University of ZürichGoogle Scholar
  4. Baella B, Pla M (2001) Map names generalization at the Institut Cartogràfic de Catalunya. In: Proceedings of the 5th ICA workshop on progress in automated map generalization, Beijing, 2001. http://generalisation.icaci.org/images/files/workshop/workshop2001/baella-pla_v0.pdf. Accessed 25 June 2013
  5. Baella B, Pla M (2003) An example of database generalization workflow: the Topographic Data-base of Catalonia at 1:25,000 In: Proceedings of the 7th ICA workshop on progress in automated map generalization, Paris, 2003. http://generalisation.icaci.org/images/files/workshop/workshop2003/baella_et_al_v1.pdf. Accessed 29 May 2013
  6. Baella B, Palomar Vázquez JM, Pardo Pascual JE, Pla M (2007) Spot heights generalization: deriving the relief of the Topographic Database of Catalonia at 1:25,000 from the master database. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, 2007. http://generalisation.icaci.org/images/files/workshop/workshop2007/Blanca_ICAWorkshop2.pdf. Accessed 29 May 2013
  7. Baella B, Lleopart A, Pla M (2012) ICC topographic databases: design of a MRDB for data management optimization. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, 2012. http://generalisation.icaci.org/images/files/workshop/submissions2012/genemr2012_session4_sub4.pdf. Accessed 29 May 2013
  8. Balley S, Parent C, Spaccapietra S (2004) Modelling geographic data with multiple representations. Int J Geograph Inf Sci 18(4):329–354CrossRefGoogle Scholar
  9. Bard S (2004) Quality assessment of cartographic generalisation. Trans GIS 8(1):63–81CrossRefGoogle Scholar
  10. Barrault M, Regnauld N, Duchêne C, Haire K, Baeijs C, Demazeau Y, Hardy P, Mackaness W, Ruas A, Weibel R (2001) Integrating multi-agent, object-oriented, and algorithmic techniques for improved automated map generalization. In: Chinese Society of Geodesy Photogrammetry and Cartography (eds) Proceedings of the 20th international cartographic conference, Beijing, 2001Google Scholar
  11. Bobzien M, Petzold I, Burghardt D (2007) Automated derivation of a 1:300,000 topographic Map from Swiss DLM VECTOR 200. In: Proceedings of 23rd international cartographic conference, Moscow, 2007Google Scholar
  12. Boffet A, Coquerel C (2000) Urban classification for generalization orchestration. In: ISPRS 2000. Proceedings of the 19th congress of the international society for photogrammetry and remote sensing, Amsterdam, 2000Google Scholar
  13. Brewer CA, Buttenfield BP (2010) Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping. Geoinformatica 14:221–239CrossRefGoogle Scholar
  14. Brewer CA, Stanislawski LV, Buttenfield BP, Raposo P, Sparks KA, Howard MA (2013) Automated thinning of road networks and road labels for multiscale design of The National Map of the United States. Cartography and Geographic Information Systems (in press)Google Scholar
  15. Buttenfield BP, Stanislawski LV, Brewer CA (2011) Adapting generalization tools to physi-ographic diversity for the United States National Hydrography Dataset. Cartography Geogr Inf Syst 38(3):289–301CrossRefGoogle Scholar
  16. Cecconi A, Weibel R, Barrault M (2002) Improving automated generalization for on-demand web mapping by multiscale databases. In: Proceedings international symposium on geospatial theory, processing, and applications, OttawaGoogle Scholar
  17. Chaudhry OZ, Mackaness WA (2005) Rural and Urban road network generalization deriving 1:250,000 from 1:1250. In: Proceedings of the 22nd international cartographic conference, a Coruña, 10–16 July 2005Google Scholar
  18. Christophe S (2011) Creative colours specification based on knowledge (ColorLegend System). Cartographic Journal—ICC Paris 48(2):138–145Google Scholar
  19. Christophe S (2012) Cartographic styles between traditional and original (towards a cartographic style model). In: AutoCarto’12. Proceedings of the 17th AutoCarto international symposium on automated cartography, Columbus, 16–18 Sep 2012Google Scholar
  20. Danish Geodata Agency (2013) ICA Barcelona—Generalisation and MRDB. Presentation at the ICA/EuroSDR NMA Symposium, Barcelona, 2013. http://generalisation.icaci.org/images/files/workshop/symposium2013/presentations/2013_03_21_BarcelonaNMAMeeting_GST.pdf. Accessed 25 June 2013
  21. Eurogeographics (2005) Generalisation processes: a benchmark study of the Expert group on Quality. Eurogeographics internal report, 2005Google Scholar
  22. Féchir A (2013) The topo-geographic inventory. Presentation at the ICA/EuroSDR NMA Symposium, Barcelona, 2013 http://generalisation.icaci.org/images/files/workshop/symposium2013/presentations/2013_03_21_BarcelonaNMAMeeting_IGNBelgium.pdf. Accessed 25 June 2013
  23. Foerster T, Stoter JE, Kraak M (2010) Challenges for automated generalisation at European mapping agencies: a qualitative and quantitative analysis. Cartographic J 47(1):41–54CrossRefGoogle Scholar
  24. Gaffuri J (2007) Field deformation in an agent-based generalisation model: the GAEL model. In: GIDAYS’07. Proceedings of the 5th geographic information days, Münster, 10–12 Sept 2007Google Scholar
  25. Gaffuri J (2012) Toward web mapping with vector data. In: Xiao N, Kwan M-P, Goodchild M, Shekhar S (eds) GIScience 2012. 7th international conference on geographic information science, Columbus, September 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, p 87Google Scholar
  26. Gary RH, Wilson ZD, Archuleta C-AM, Thompson FE, Vrabel J (2010) Production of a national 1:1,000,000-scale hydrography dataset for the United States—feature selection, simplification, and refinement. Scientific Investigation Report 2009-5202, U.S. Department of Interior, U.S. Geological SurveyGoogle Scholar
  27. Girres JF, Touya G (2010) Quality assessment of the french OpenStreetMap dataset. Trans GIS 14(4):435–459CrossRefGoogle Scholar
  28. Gondol L, Le Bris A, Lecordix F (2008) Cartography of high mountain areas—testing of a new digital cliff drawing method. In: Proceedings of the 6th ICA mountain cartography workshop, Lenk, 11–15 Feb 2008Google Scholar
  29. Grünreich D (1985) Computer assisted generalisation: Papers CERCO-Cartography Course. Frankfurt am Main, Institut für Angewandte GeodäsieGoogle Scholar
  30. Guislain P, Lecordix F (2011) The ever improving GIS map: evolution of cartographic representations and map production processes—Lessons learnt from the IGN topographic map production project. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  31. ICA and EuroSDR (2013) ICA/EuroSDR NMA Symposium 2013. http://generalisation.icaci.org/index.php/activities/12-next-events-details/48-nma-symposium-2013-general. Accessed 17 June 2013
  32. INSPIRE (2007) Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). http://inspire.jrc.ec.europa.eu/. Accessed 29 May 2013
  33. Jaara K, Lecordix F (2011) Extraction of cartographic contour lines using digital terrain model (DTM). Cartographic J 48(2):131–137CrossRefGoogle Scholar
  34. Jahard Y, Lemarié C, Lecordix F (2003). The implementation of new technology to automate map generalisation and incremental updating processes. In: International Cartographic Association (eds) Proceedings of the 21st international cartographic conference, Durban, 2003Google Scholar
  35. Jakobsson A, Ostensen O, Lovell D, Hopfstock A, Mellum R, Kruse D, Portele C, Urbanas S, Hartnor J, Bray A, Aslesen L (2013) European location framework—One reference geo-information service for Europe. In: Proceedings of the 26th international cartographic conference, Dresden, 25–30 Aug 2013Google Scholar
  36. Jenny B, Hutzler E, Hurni L (2010) Scree representation on topographic maps. The Cartographic Journal 47(2):141–149. http://www.screepainter.com. Accessed 29 May 2013Google Scholar
  37. Kereneur R, Thomas J, Grémeaux N (2011) Generalisation rules for ExM medium to small scale. ESDIN Project, Deliverable D10.6. http://www.esdin.eu/project/summary-esdin-project-public-deliverables. Accessed 7 June 2013
  38. Lecordix F, Lemarié C (2007) Managing generalisation updates in IGN map production. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) The generalisation of geographic information: models and applications, Chapter 15. Elsevier, pp 285–300Google Scholar
  39. Lecordix F, Plazanet C, Lagrange JP (1997) A platform for research in generalization: application to caricature. GeoInformatica 1(2):161–182CrossRefGoogle Scholar
  40. Maugeais E, Lecordix F, Halbecq X, Braun A (2011) Dérivation cartographique multi échelles de la BDTopo de l’IGN France: mise en œuvre du processus de production de la Nouvelle Carte de Base. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  41. Moore L (2011) US Topo—A new national map series. Direction Magazine. 16 May 2011. http://www.directionsmag.com/articles/us-topo-a-new-national-map-series/178707. Accessed 29 May 2013
  42. Moore L (2013) US Topo—A new national map series, 2012 update. Directions Magazine, 14 Jan 2013. http://www.directionsmag.com/articles/us-topoa-new-national-map-series-2012-update/300690. Accessed 29 May 2013
  43. Palomar-Vázquez JM, Pardo Pascual JE, Baella B, Pla M (2011): Generalizing the altimetric information of the Topographic Database of Catalonia at 1:5,000: classification and selection of break lines. In: Proceedings of the 14th ICA Workshop on Generalisation and Multiple Representation, jointly organised with ISPRS Commission II/2 Working group on Multiscale Representation of Spatial Data, Paris, France, 2011 http://generalisation.icaci.org/images/files/workshop/workshop2011/genemr2011_Palomar-Vazquez.pdf. Accessed 29 May 2013
  44. Pätynen V, Ristioja J (2009) Vector based generalization application in the production of small scale databases of the NLS of Finland. In: Proceedings of the 24th international cartographic conference, Santiago, 15–21 Nov 2009Google Scholar
  45. Petzold I, Burghardt D, Bobzien M (2006) Workflow management and generalisation services. In: Proceedings of the 10th ICA workshop on generalisation and multiple representation, Portland, 2006. http://generalisation.icaci.org/images/files/workshop/workshop2006/ICA2006-Petzold.pdf. Accessed 29 May 2013
  46. Plessis O (2011) New cartography of France at 1:100,000 scale: an IGN mapped vector database. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  47. Punt E, Watkins D (2010) User-directed generalization of roads and buildings for multi-scale topography. In: Proceedings of the 13th ICA workshop on generalisation and multiple representation, Zürich. http://generalisation.icaci.org/images/files/workshop/workshop2010/genemr2010_submission_22.pdf. Accessed 29 May 2013
  48. Regnauld N (2011) OS VectorMap District: automated generalisation, text placement and conflation in support of making pubic data public. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  49. Regnauld N, Plews M, Martin P (2012) An enterprise system for generalisation. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul. http://generalisation.icaci.org/images/files/workshop/submissions2012/genemr2012_session4_sub2.pdf. Accessed 29 May 2013
  50. Regnauld N, Lessware S, Wesson C, Martin P (2013) Deriving products from a Multi Reso-lution database using automated generalisation at ordnance survey. In: Proceedings of the 26th international cartographic conference, Dresden, 25–30 Aug 2013Google Scholar
  51. Revell P, Regnauld N, Bulbrooke G (2011) OS VectorMapTM District: automated generalisation, text placement and conflation in support of making Pubic Data Public. In: Proceedings of the 25th international cartographic conference, Paris, 3–8 July 2011Google Scholar
  52. Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. Dissertation (PhD), Université de Marne-la-ValléeGoogle Scholar
  53. Ruas A (2001) Automatic generalisation project: Learning process from interactive generalisation. OEEPE Official Publication n 39Google Scholar
  54. Sarjakoski T, Sester M, Sarjakoski LT, Harrie L, Hampe M, Lehto L, Koivula T (2005) Web generalisation services in GiMoDig—towards a standardised service for real-time generalisation. In: Toppen F, Painho M (eds) AGILE 2005. Proceedings of the 8th AGILE conference on geographic information science, Estoril, 26–28 May 2005Google Scholar
  55. Stanislawski LV, Buttenfield BP (2011) Hydrographic generalization tailored to dry moun-tainous regions. Cartography Geograph Inf Sci 38(2):117–125CrossRefGoogle Scholar
  56. Stanislawski LV, Savino S (2011) Pruning of hydrographic networks: a comparison of two approaches. In: Proceedings of the 14th ICA workshop on generalisation and multiple representation, jointly organised with ISPRS Commission II/2 Working group on Multiscale Representation of Spatial Data, Paris, 2011. http://generalisation.icaci.org/images/files/workshop/workshop2011/genemr2011_Stanislawski.pdf. Accessed 29 May 2013
  57. Stoter J (2005) Generalisation within NMA’s in the 21st century. In: Proceedings of the 22nd international cartographic conference, A Coruña, 10–16 July 2005Google Scholar
  58. Stoter JE, van Smaalen J, Bakker N, Hardy P (2009a) Specifying map requirements for automated generalisation of topographic data. Cartographic J 46(3):214–227CrossRefGoogle Scholar
  59. Stoter JE, Burghardt D, Duchêne C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S (2009b) Methodology for evaluating automated map generalization in commercial software. Comput Environ Urban Syst 33(5):311–324CrossRefGoogle Scholar
  60. Stoter J, Baella B, Blok C, Burghardt D, Duchêne C, Pla M, Regnauld N, Touya G (2010) State of the art of automated generalisation in commercial software. EuroSDR official publication no. 58 http://www.eurosdr.net/projects/generalisation/eurosdr_gen_final_report_mar2010.pdf
  61. Stoter JE, van Smaalen J, Nijhuis R, Dortland A, Bulder J, Bruns B (2012) Fully automated generalisation of topographic data in current geo-information environments. In: Zlatanova S, Ledoux H, Fendel EM, Rumor M (eds) Urban and regional data management—UDMS annual 2011. CRC Press, Leiden, pp 109–120Google Scholar
  62. Stoter JE, Post M, van Altena V, Nijhuis R, Bruns B (2013) Fully automated generalisation of a 1:50 k map from 1:10 k data. Cartography and Geographic Information Science, In press. (expected to be published in January 2014)Google Scholar
  63. Sugarbaker LJ, Carswell WJ (2011) The National Map: U.S. Geological Survey Fact Sheet 2011-3042. http://pubs.usgs.gov/fs/2011/3042. Accessed 29 May 2013
  64. Swisstopo (2013) Swisstopo journey through time http://www.swisstopo.admin.ch/internet/swisstopo/en/home/current/newproducts/20130117.html. Accessed 29 May 2013
  65. The Federal Authorities of the Swiss Confederation (2007) Geoinformation Act. http://www.admin.ch/ch/e/rs/5/510.62.en.pdf. Accessed 29 May 2013
  66. Thom S (2005) A strategy for collapsing OS integrated transport network dual carriageways. In: Proceedings of the 9th ICA workshop on generalisation and multiple representation, La Coruña. http://generalisation.icaci.org/images/files/workshop/workshop2005/Thom.pdf. Accessed 25 June 2013
  67. Thom S (2007) Automatic resolution of road network conflicts using displacement algorithms orchestrated by software agents. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow. http://generalisation.icaci.org/images/files/workshop/workshop2007/Thom_ICA_Workshop.pdf. Accessed 29 May 2013
  68. Thompson RC, Richardson DE (1999) The good continuation principle of perceptual organization applied to the generalization of road networks. In: Proceedings of the 19th international cartographic conference, Ottawa, 14–21 Aug 1999Google Scholar
  69. Töpfer F, Pillewizer W (1966) The principles of selection: a means of cartographic generalization. Cartographic J 3(1):10–16CrossRefGoogle Scholar
  70. Tóth K (2007) Data consistency and multiple-representation in the ESDI. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow. http://generalisation.icaci.org/images/files/workshop/workshop2007/Toth-ICAWorkshop.pdf. Accessed 29 May 2013
  71. Trevisan J (2004) From DLM to multi representation DCM—Modelling an application on buildings. In: Proceedings of the 8th ICA workshop on generalisation and multiple representation, jointly organized with EuroSDR Commission on Data Specifications, Leicester. http://generalisation.icaci.org/images/files/workshop/workshop2004/Trevisan-v2-ICAWorkshop.pdf. Accessed 29 May 2013
  72. US EPA and US DOI (1999) Standard for National Hydrography Dataset, United States Environmental Protection Agency, United State Department of the Interior, USGS, National Mapping Program Technical Instructions. July 1999. http://nationalmap.gov/standards/pdf/NHDH0799.PDF. Accessed 29 May 2013
  73. USGS (1955) Map publication scales, book 1. Part B, Geological Survey topographic instructions, March 1955Google Scholar
  74. USGS (1985) Part 2: Base preparation. Standards for 1:100,000-scale quadrangle maps. Jan 1985Google Scholar
  75. USGS (1993) Part 3: feature specification and compilation. Standards for 1:100,000-scale quadrangle maps. Feb 1993Google Scholar
  76. Wang Z, Muller JC (1998) Line generalization based on analysis of shape characteristics. Cartography Geograph Inf Syst 25(1):3–15CrossRefGoogle Scholar
  77. Weibel R, Dutton G (1999) Generalising spatial data and dealing with multiple representations. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems—Principles, techniques, application and management, 2nd edn, vol 1. pp 125–155Google Scholar
  78. Zhou S, Jones CB (2004) Shape-aware line generalisation with weighted effective area. In: Fisher PF (eds) SDH 2004: Developments in spatial data handling, proceedings of the 11th international symposium on spatial data handling, Leicester, Springer, pp 369–380Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cécile Duchêne
    • 1
    Email author
  • Blanca Baella
    • 2
  • Cynthia A. Brewer
    • 3
  • Dirk Burghardt
    • 4
  • Barbara P. Buttenfield
    • 5
  • Julien Gaffuri
    • 6
  • Dominik Käuferle
    • 7
  • François Lecordix
    • 8
  • Emmanuel Maugeais
    • 8
  • Ron Nijhuis
    • 9
  • Maria Pla
    • 2
  • Marc Post
    • 9
  • Nicolas Regnauld
    • 10
  • Lawrence V. Stanislawski
    • 11
  • Jantien Stoter
    • 9
  • Katalin Tóth
    • 6
  • Sabine Urbanke
    • 12
  • Vincent van Altena
    • 9
  • Antje Wiedemann
    • 12
  1. 1.Laboratoire COGITIGNSaint-MandéFrance
  2. 2.Institut Cartogràfic de CatalunyaBarcelonaSpain
  3. 3.Department of GeographyPennsylvania State UniversityUniversity ParkUSA
  4. 4.Dresden University of TechnologyDresdenGermany
  5. 5.Department of GeographyUniversity of ColoradoBoulderUSA
  6. 6.Institute for Environment and SustainabilityJoint Research Centre, European CommissionIspraItaly
  7. 7.Federal Office of Topography swisstopoWabernSwitzerland
  8. 8.Developments departmentIGNSaint-MandéFrance
  9. 9.Kadaster Geo informatieZwolleNetherlands
  10. 10.Ordnance Survey Great BritainSouthamptonUK
  11. 11.Center of Excellence for Geospatial Information ScienceUnited States Geological SurveyRollaUSA
  12. 12.AdV ProjectLGLStuttgartGermany

Personalised recommendations