Advertisement

Generalisation in the Context of Schematised Maps

  • William MackanessEmail author
  • Andreas Reimer
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In the last decade schematised maps have garnered substantial research interest from disciplines such as cartography, computational geometry and spatial cognition. More often than not, the approaches have been following their own specific goals, leaving the question of what they have in common relatively open. Most research has had metro maps and their automated creation as its focus. In this chapter we seek a more systematic treatment of what constitutes schematised maps. This chapter organises and differentiates the understanding of what schematisation is and how it relates to generalisation. Three cases studies variously explore and illustrate developments in the automatic generation of schematised maps.

Keywords

Event Horizon Generalisation Operator Hill Climbing Bezier Curve Automate Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawala M, Stolte C (2001) Rendering effective route maps: improving usability through generalization. In: Fiume E (eds) Proceedings of computer graphics ACM SIGGRAPH ‘01, ACM Press, pp 241–249Google Scholar
  2. Anand S, Ware JM, Taylor GE (2006) Generalization and schematization of large scale digital geographic datasets for Mobile GIS applications. In: Dynamic and mobile GIS: investigating change in space and time, Taylor and Francis Ltd, LondonGoogle Scholar
  3. Anand S, Avelar S, Ware J, Jackson J (2007) Automated schematic map production using simulated annealing and gradient descent approaches. In: Proceedings of the 15th annual GIS research UK conference (GISRUK)Google Scholar
  4. Avelar S (2002) Schematic maps on demand: design, modeling and visualization. Unpublished PhD Dissertation, Swiss Federal Institute of TechnologyGoogle Scholar
  5. Avelar S, Huber R (2001) Modeling a public transport network for generation of schematic maps and location queries. In: Proceedings of the 20th international cartographic conferenceGoogle Scholar
  6. Avelar S, Hurni L (2006) On the design of schematic transport maps. Cartographica 41(3):217–228CrossRefGoogle Scholar
  7. Benslimane D, Vangenot C, Roussey C, Arara A (2003) Multi representation in ontologies. In: Proceedings of the 7th East-European conference on advances in databases and information systems (ADBIS’2003)Google Scholar
  8. Bertault F (2000) A force-directed algorithm that preserves edge crossing properties. Inf Process Lett 74(1–2):7–13CrossRefGoogle Scholar
  9. Bertsimas D, Weismantel R (2005) Optimization over integers. Dynamic IdeasGoogle Scholar
  10. Bollmann J, Koch W (2002) Lexikon der Kartographie und Geomatik, vol 2. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  11. Brunet R (1980) La composition des mode`les dans l’analyse spatiale. L’Espace Geographique 8:253–265. Available in English as: Building models for spatial analysis. In: Two decades of l’Espace Geographique, Montpellier, 1993Google Scholar
  12. Cabello S, de Berg M, van Dijk S, van Kreveld M, Strijk T (2001) Schematization of road networks. In: Proceedings of the 17th annual symposium on computational geometry, MedfordGoogle Scholar
  13. Casakin H, Barkowsky T, Klippel A, Freksa C (2000) Schematic maps as way finding aids. Lecture notes in artificial intelligence—spatial cognition II—integrating abstract theories, Empirical Studies, Formal Methods, and Practical Applications, Springer, Berlin, pp 54–71Google Scholar
  14. Chaudhry OZ, Mackaness WA, Regnauld N (2009) A functional perspective on map generalisation. Comput Environ Urban Syst 33(5):349–362CrossRefGoogle Scholar
  15. Chernobelskiy R, Cunningham K, Kobourov SG, Trott L (2011) Force-directed lombardi-style graph drawing. Graph Drawing 2011:320–331Google Scholar
  16. Cheylan J-P, Libourel T, Mende C (1997) Graphical modelling for geographic explanation. In: Spatial information theory: a theoretical basis for GIS. Springer, Berlin, pp 473–483Google Scholar
  17. Dong W, Guo Q, Liu J (2008) Schematic road network map progressive generalization based on multiple constraints. Geo-spatial Inf Sci 11(3):215–220Google Scholar
  18. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing. Prentice Hall, Upper Saddle RiverGoogle Scholar
  19. Dühr S (2007) The visual language of spatial planning: exploring cartographic representations for spatial planning in Europe. Routledge, LondonGoogle Scholar
  20. Duncan CA, Eppstein D, Goodrich MT, Kobourov SG, Nöllenburg M (2012) Lombardi drawings of graphs. J Graph Algorithms Appl 16(1):85–108CrossRefGoogle Scholar
  21. Dwyer T, Hurst N, Merrick D (2008) A fast and simple heuristic for metro map path simplification. In: Advances in visual computing. Springer, Berlin Heidelberg, pp 22–30Google Scholar
  22. Ebner D, Klau GW, Weiskircher R (2003) Force-based label number maximization. Technical Report TR-186-1-03-02, Institut für Computergraphik und Algorithmen, Technische Universität WienGoogle Scholar
  23. Ferras R (1986) Atlas Reclus: Espana/Espagne/Spain. Fayard/RECLUSGoogle Scholar
  24. Fink M, Haverkort H, Nöllenburg M, Maxwell R, Schuhmann M, Alexander J, Wolff A (2013) Drawing metro maps using Bézier curves. In: Didimo W, Patrignani M (eds), Conference Paper : Graph Drawing (20th International Symposium, GD 2012, Redmond WA, USA, 19–21 Sept 2012. Revised Selected Papers), Lecture Notes in Computer Science, 7704. Springer, Berlin, pp 463–474Google Scholar
  25. Finkel B, Tamassia R (2005) Curvilinear graph drawing using the force-directed method graph drawing. Lect Notes Comput Sci 3383:448–453CrossRefGoogle Scholar
  26. Fruchterman TMJ, Reingold EM (1991) Graph Drawing by Force-Directed Placement. Software: Practice and Experience 21(11)Google Scholar
  27. Gould P, White R (2004) Mental maps. RoutledgeGoogle Scholar
  28. Gross J, Yellen J (1999) Graph theory and its applications. CRC PressGoogle Scholar
  29. Gürtler A (1927) Das Zeichnen im erdkundlichen Unterricht. Zweites Heft—Europa (ohne Deutschland), Verlag Ernst Wunderlich, LeipzigGoogle Scholar
  30. Hake G, Grünreich D, Meng L (2002) Kartographie Visualisierung raum-zeitlicher Informationen. Walter de Gruyter, Berlin, New YorkGoogle Scholar
  31. Harrie L, Stigmar H (2010) An evaluation of measures for quantifying map information. ISPRS J Photogrammetry Remote Sens 65:266–274CrossRefGoogle Scholar
  32. Haunert J-H, Sering L (2011) Drawing road networks with focus regions. IEEE Trans Visual Comput Graphics 17(12):2555–2562CrossRefGoogle Scholar
  33. Head CG (1991) The map as natural language or semiotic system: review and comment. In: Mark DM, Frank AU (eds) Cognitive and linguistic aspects of geographic space. NATO ASI series D: Behavioural and social sciences, vol 63. Kluwer, Dodrecht, pp 237–262Google Scholar
  34. Hile H, Grzeszczuk R, Liu A, Vedantham R, Košecka J, Borriello G (2009) Landmark-based pedestrian navigation with enhanced spatial reasoning. In: Proceedings of the 7th international conference on pervasive computing (Pervasive ‘09), Springer, Berlin Heidelberg, pp 59–76Google Scholar
  35. Hochmair H (2009) The influence of map design on route choice from public transportation maps in urban areas. Cartographic J 46(3):242–256CrossRefGoogle Scholar
  36. Holten D, Van Wijk J (2009) Force-directed edge bundling for graph visualization. Eurographics/IEEE-VGTC Symposium on Visualization 28(3)Google Scholar
  37. Hong S-H, Merrick D, do Nascimento HAD (2006) Automatic visualisation of metro maps. J Visual Lang Comput 17(3):203–224Google Scholar
  38. Hurter C, Serrurier M, Alonzo R, Vinot JL, Tabart G (2010) An automatic generation of schematic maps to display flight routes for air traffic controllers: structure and color optimisation. In: Proceedings of the international conference on advanced visual interfacesGoogle Scholar
  39. ICA (1973) Multilingual dictionary of technical terms in cartography by International Cartographic Association, Commission II. WiesbadenGoogle Scholar
  40. Jalta J, Joly JF, Reineri R (2006) Les croquis et les schémas du Bac Géographie Terminales ES, L, S: Fichier Méthodes et exercices. Magnard, ParisGoogle Scholar
  41. Klippel A (2004) Wayfinding choremes: conceptualizing wayfinding and route direction elements. PhD thesis, Universität BremenGoogle Scholar
  42. Klippel A, Richter K-F, Barkowsky T, Freksa C (2005) The cognitive reality of schematic maps. In: Methods and implementations of map-based mobile services—theories. Springer, Berlin, pp 57–74Google Scholar
  43. Laurini R, Sebillo M, Vitiello G, Sol-Martinez D, Milleret-Raffort F (2009) Computer-generated visual summaries of spatial databases: chorems or not chorems? SAPIENS 2:1–8Google Scholar
  44. Lauther U, Stübinger A (2001) Generating schematic cable plans using spring embedder methods. In: Proceedings of symposium graph drawingGoogle Scholar
  45. Li Z, Dong W (2010) A stroke-based method for automated generation of schematic network maps. Int J Geogr Inf Sci 24(11):1631–1647CrossRefGoogle Scholar
  46. Mackaness WA, Quigley A, Tanasescu V (2011) Hierarchical structures in support of dynamic presentation of multi resolution geographic information for navigation in urban environments. GISRUK, 2011Google Scholar
  47. Merrick D, Gudmundsson J (2007) Path simplification for metro map layout. In: Kaufmann M, Wagner D (eds) Graph drawing 2006 LNCS, vol 4372. Springer, Heidelberg, pp 258–269Google Scholar
  48. Montello DR (2002) Cognitive map-design research in the twentieth century: theoretical and empirical approaches. Cartography GIS 29(3):283–304Google Scholar
  49. Mourinho J, Galvao, Falcao T, Cunha J (2011) Spider maps for location-based services improvement exploring services science. In: Snene M, Ralyte J, Morin J-H (eds) 2nd International conference IESS, Springer, Berlin Heidelberg, pp 16–29Google Scholar
  50. Muehlenhaus I (2013) The design and composition of persuasive maps. Cartography Geogr Inf Sci 40(5):401–414CrossRefGoogle Scholar
  51. Muller JC (1991) Generalization of spatial databases. In: Maguire DJ, Goodchild MF, Rhind D (eds) Geographical information systems, vol 1Google Scholar
  52. Nivala A-M, Sarjakoski LT (2003) Need for context-aware topographic maps in mobile devices. In: Proceedings of the 9th scandinavian research conference on geographic information science ScanGISí 2003, Espoo, 2003. Available via DIALOG. http://www.scangis.org/scangis2003/papers/22.pdf
  53. Nöllenburg M, Wolff A (2011a) Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans Visual Comput Graphics 17(5):626–641CrossRefGoogle Scholar
  54. Nöllenburg M, Wolff A (2011b) Appendix of drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans Vis Comput GraphicsGoogle Scholar
  55. Ogrissek R (ed) (1983) ABC Kartenkunde. Brockhaus, LeipzigGoogle Scholar
  56. Quigley AJ (2001) Large scale relational information visualization, clustering, and abstraction. PhD Thesis, University of St Andrews. Available via DIALOG. www.cs.st-andrews.ac.uk/~aquigley/aquigley-thesis-mar-02.pdf
  57. Rase WD, Sinz M (1993) Kartographische Visualisierung von Planungskonzepten. Kartographische Nachrichten 43:139–145Google Scholar
  58. Regnauld N, McMaster RB (2007) A synoptic view of generalisation operators. In: Generalisation of geographic information: cartographic modelling and applications. ElsevierGoogle Scholar
  59. Reimer A (2010) Understanding chorematic diagrams: towards a taxonomy. Cartographic J 47(4):330–350CrossRefGoogle Scholar
  60. Reimer A, Fohringer J (2010) Towards constraint formulation for chorematic schematisation tasks. In: Geographic Information on Demand: 13th Workshop of the ICA commission on Generalisation and Multiple Representation, ZurichGoogle Scholar
  61. Reimer A, Meulemans W (2011) Parallelity in chorematic territorial outlines. In: Proceedings of the 14th ICA workshop on generalisation and multiple representation, jointly organised with ISPRS Commission II/2 Working group on Multiscale Representation of Spatial Data, Paris, FranceGoogle Scholar
  62. Reimer A, Volk C (2012) An approach for using cubic Bézier curves for schematizations of categorical maps. In: 15th Workshop of the ICA commission on generalisation and multiple representation, IstanbulGoogle Scholar
  63. Roberts MJ (2012) Underground maps unravelled: explorations in information design. Author publication, Wivenhoe, EssexGoogle Scholar
  64. Roberts MJ, Newton EJ, Lagattolla FD, Hughes S, Hasler MC (2013) Objective versus subjective measures of Paris Metro map usability: investigating traditional octolinear versus all-curves schematic maps. Int J Hum Comput Stud 71:363–386CrossRefGoogle Scholar
  65. Saalfeld A (2001) Area-preserving Piecewise Affine Mappings. In: Proceedings of the 17th annual symposium on computational geometry SCG 01Google Scholar
  66. Scharfe W (1997) The development of consciousness in cartography of mass media maps. In: Scharfe W (eds) Proceedings of international conference on mass media maps: approaches, results, social impact (Berliner Geowissenschaftliche Abhandlungen, Reihe C, Kartographie, Band 16), Freie Universität Berlin, Berlin, p 188Google Scholar
  67. Schmidt-Seiwert V, Porsche L, Schön P (eds) (2006) ESPON ATLAS Mapping the structure of the European territory. Federal Office for Building and Regional Planning, BerlinGoogle Scholar
  68. Sester M, Elias B (2007) Relevance of generalisation to the extraction and communication of wayfinding information. In: Mackaness W, Ruas A, Sarjakoski LT (eds) Generalisation of geographic information: cartographic modelling and applications. Elsevier, AmsterdamGoogle Scholar
  69. Sitte C (1996) Möglichkeiten für den Aufbau besserer Raumvorstellungen und eines globalen Abbilds der Erde. GWUnterricht 64:44–52Google Scholar
  70. Steiniger S (2007) Enabling pattern-aware automated map generalisation. PhD Thesis, The University of ZurichGoogle Scholar
  71. Stiens G (1996) Prognostik in der Geographie. Westermann, BraunschweigGoogle Scholar
  72. Stoter J, van Smaalen J, Bakker N, Hardy P (2009) Specifying map requirements for automated generalization of topographic data. Cartographic J 46(3):214–227CrossRefGoogle Scholar
  73. Stott J, Rodgers P (2004) Metro map layout using multicriteria optimization. In: Proceedings of the 8th international conference on information visualisation (IV’04). IEEE Comput Soc, pp 355–362Google Scholar
  74. Stott J, Rodgers P, Martínez-Ovando JC, Walker SG (2011) Automatic metro map layout using multicriteria optimization. IEEE Trans Vis Comput Graphics 17(1):101–119Google Scholar
  75. Tainz P, Heitmann J (2005) Scenarios of application of highly generalized geo-information. In: International symposium on generalization of information (ISGI 2005), Berlin, 14–16 Sep 2005Google Scholar
  76. Töpfer F (1977) Kartographische Generalisierung, VEB Hermann HaackGoogle Scholar
  77. Tufte ER (2001) The visual display of quantitative information, 2nd edn. Graphics Press, CheshireGoogle Scholar
  78. van Goethem A, Meulemans W, Reimer A, Haverkort H, Speckmann B (2013) Topologically safe curved schematization. Cartographic J 50(3):267–284Google Scholar
  79. Wang YS, Chi MT (2011) Focus + context metro maps. IEEE Trans Vis Comput Graphics 17(12):2528–35. doi: 10.1109/TVCG.2011.205 Google Scholar
  80. Ware JM, Anand S, Taylor GE, Thomas N (2006) Automated production of schematic maps for mobile applications. Trans GIS 10(1):25–42Google Scholar
  81. Wolff A (2007) Drawing subway maps: a survey. Informatik—Forschung und Entwicklung 22(1):23–44Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of GeoSciencesThe University of EdinburghEdinburghUK
  2. 2.Institute of GeographyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations