Skip to main content

Engineering Branch-and-Cut Algorithms for the Equicut Problem

  • Chapter
  • First Online:
Discrete Geometry and Optimization

Part of the book series: Fields Institute Communications ((FIC,volume 69))

Abstract

A minimum equicut of an edge-weighted graph is a partition of the nodes of the graph into two sets of equal size such that the sum of the weights of edges joining nodes in different partitions is minimum. We compare basic linear and semidefinite relaxations for the equicut problem, and find that linear bounds are competitive with the corresponding semidefinite ones but can be computed much faster. Motivated by an application of equicut in theoretical physics, we revisit an approach by Brunetta et al. and present an enhanced branch-and-cut algorithm. Our computational results suggest that the proposed branch-and-cut algorithm has a better performance than the algorithm of Brunetta et al. Further, it is able to solve to optimality in reasonable time several instances with more than 200 nodes from the physics application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.J. et al.: TSP cuts which do not conform to the template paradigm. Comput. Comb. Optim. 2241, 261–303 (2001)

    Google Scholar 

  2. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In: Integer Programming and Combinatorial Optimization, IPCO’08, Bertinoro, pp. 112–124 (2008)

    Google Scholar 

  3. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Program. Comput. 4, 275–306 (2012)

    Article  MathSciNet  Google Scholar 

  4. Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math. Oper. Res. 10(2), 340–358 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  MATH  Google Scholar 

  6. Billionnet, A., Elloumi, S., Plateau, M.C.: Quadratic convex reformulation: a computational study of the graph bisection problem. Technical report, Laboratoire CEDRIC (2005)

    Google Scholar 

  7. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1–4), 613–623 (1999). Special Issue: Interior Point Methods

    Google Scholar 

  8. Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equicut problem. Math. Program. B 78(2), 243–263 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Oper. Res. Lett. 36(4), 430–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope. I: formulations, dimension and basic facets. Math. Program. A 49, 49–70 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope. II: valid inequalities and facets. Math. Program. A 49, 71–90 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. CPLEX®; Callable Library version 12.1 – C API Reference Manual. ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcallablelibrary.pdf (2009)

  13. de Simone, C.: The cut polytope and the boolean quadric polytope. Discret. Math. 79(1), 71–75 (1990)

    Article  MATH  Google Scholar 

  14. de Souza, C.C., Laurent, M.: Some new classes of facets for the equicut polytope. Discret. Appl. Math. 62(1–3), 167–191 (1995)

    Article  MATH  Google Scholar 

  15. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, 1st edn. Springer, New York (1997)

    MATH  Google Scholar 

  16. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, R. (ed.) Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  17. Ferreira, C., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: Formulations and valid inequalities for the node capacitated graph partitioning problem. Math. Program. 74, 247–266 (1996)

    MATH  Google Scholar 

  18. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: a computational study. Math. Program. 81, 229–256 (1998)

    MATH  Google Scholar 

  19. Frieze, A.M., Jerrum, M.: Improved approximation algorithms for max k-cut and max bisection. In: Proceedings of the 4th International IPCO Conference on Integer Programming and Combinatorial Optimization, Copenhagen, pp. 1–13. Springer, London (1995)

    Google Scholar 

  20. Anjos, M.F., Liers, F., Pardella, G., and Schmutzer, A.: Instances and computational results. (2012) http://cophy.informatik.uni-koeln.de/eng_eq_ref.html

  21. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62, 133–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope. Technical report, IASI-CNR, R. 11–14 (2011)

    Google Scholar 

  24. Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In: Pardalos, P.M., Wolkowicz, H. (eds.) Topics in Semidefinite and Interior-Point Methods, pp. 77–95. AMS, Providence (1998)

    Google Scholar 

  25. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. INFORMS J. Comput. 12(3), 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    MATH  Google Scholar 

  27. Klerk, E., Pasechnik, D., Sotirov, R., Dobre, C.: On semidefinite programming relaxations of maximum k-section. Math. Program. 136(2):1–26 (2012)

    Article  MathSciNet  Google Scholar 

  28. Letchford, A.N., Reinelt, G., Theis, D.O.: A faster exact separation algorithm for blossom inequalities. In: IPCO’04, New York, pp. 196–205 (2004)

    Google Scholar 

  29. Mehrotra, A.: Cardinality constrained boolean quadratic polytope. Discret. Appl. Math. 79(1–3), 137–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  31. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sotirov, R.: An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem. INFORMS J. Comput. (to appear)

    Google Scholar 

Download references

Acknowledgements

Financial support from the German Science Foundation is acknowledged under contract Li 1675/1. The first author acknowledges financial support from the Alexander von Humboldt Foundation and from the Natural Science and Engineering Research Council of Canada. We thank Helmut G. Katzgraber, Creighton Thomas and Juan Carlos Andersen for providing us with instances for the physics application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel F. Anjos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anjos, M.F., Liers, F., Pardella, G., Schmutzer, A. (2013). Engineering Branch-and-Cut Algorithms for the Equicut Problem. In: Bezdek, K., Deza, A., Ye, Y. (eds) Discrete Geometry and Optimization. Fields Institute Communications, vol 69. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00200-2_2

Download citation

Publish with us

Policies and ethics