Skip to main content

Selected Open Problems in Discrete Geometry and Optimization

  • Chapter
  • First Online:
Discrete Geometry and Optimization

Part of the book series: Fields Institute Communications ((FIC,volume 69))

Abstract

A list of questions and problems posed and discussed in September 2011 at the following consecutive events held at the Fields Institute, Toronto: Workshop on Discrete Geometry, Conference on Discrete Geometry and Optimization, and Workshop on Optimization. We hope these questions and problems will contribute to further stimulate the interaction between geometers and optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A localization instance is said to be universally rigid if it has a unique (up to congruences) localization in any Euclidean space.

  2. 2.

    A localization instance is said to be globally rigid in \({\mathbb{R}}^{d}\) if it has a unique (up to congruences) localization in \({\mathbb{R}}^{d}\).

References

  1. Alfakih, A.Y.: On bar frameworks, stress matrices and semidefinite programming. Math. Program. B 129(1), 113–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aspnes, J., Goldenberg, D., Yang, Y.R.: On the computational complexity of sensor network localization. In: Nikoletseas S., Rolim J.D.P. (eds.) Proceedings of the 1st International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2004), Turku. Lecture Notes in Computer Science, vol. 3121, pp. 32–44. Springer (2004)

    Google Scholar 

  3. Biswas, P., Lian, T.-C., Wang, T.-C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  4. Biswas, P., Toh, K.-C., Ye, Y.: A distributed SDP approach for large–scale noisy anchor–free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30(3), 1251–1277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN 2004), Berkeley, pp. 46–54 (2004)

    Google Scholar 

  6. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Chemometrics Series, vol. 15. Research Studies Press, Taunton (1988)

    Google Scholar 

  7. Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)

    Article  MathSciNet  Google Scholar 

  8. Ge, D., Jiang, X., Ye, Y.: A note on the complexity of L p minimization. Math. Program. B 129(2), 285–299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouveia, J., Pong, T.K.: Comparing SOS and SDP relaxations of sensor network localization. Comput. Optim. Appl. 52(3), 609–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Javanmard, A., Montanari, A.: Localization from incomplete noisy distance measurements. Found. Comput. Math. (2012, Accepted for publication). doi: 10.1007/s10208-012-9129-5

    Google Scholar 

  11. Ji, S., Sze, K.-F., Zhou, Z., So, A.M.-C., Ye, Y.: Beyond convex relaxation: A polynomial–time non–convex optimization approach to network localization. In: To Appear in the Proceedings of the 32nd IEEE International Conference on Computer Communications (INFOCOM 2013), Torino (2013)

    Google Scholar 

  12. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 20(1), 192–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laurent, M., Varvitsiotis, A.: The Gram dimension of a graph. In: Mahjoub A.R., Markakis V., Milis I., Paschos V.T. (eds.) Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO 2012), Athens. Lecture Notes in Computer Science, vol. 7422, pp. 356–367. Springer (2012)

    Google Scholar 

  14. Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., Moulton., S.: Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Comput. 3(4), 16–23 (2004)

    Google Scholar 

  15. Low–Rank Matrix Recovery and Completion via Convex Optimization. http://perception.csl.illinois.edu/matrix-rank/references.html.

  16. Pong, T.K., Tseng, P.: (Robust) edge–based semidefinite programming relaxation of sensor network localization. Math. Program. A 130(2), 321–358 (2011)

    Google Scholar 

  17. Saxe, J.B.: Embeddability of weighted graphs in k–space is strongly NP–hard. In: Proceedings of the 17th Allerton Conference in Communication, Control, and Computing, Monticello, Illinois, pp. 480–489 (1979)

    Google Scholar 

  18. Sayed, A.H., Tarighat, A., Khajehnouri, N.: Network–based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 22(4), 24–40 (2005)

    Article  Google Scholar 

  19. Shames, I., Anderson, B.D.O., Fidan, B.: On the use of convex optimization in sensor network localization and synchronization. In: Proceedings of the 1st IFAC Workshop on Estimation and Control of Networked Systems, Don Orione Artigianelli, Italy, pp. 228–233 (2009)

    Google Scholar 

  20. So, A.M.-C., Ye, Y.: A semidefinite programming approach to tensegrity theory and realizability of graphs. In: Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, pp. 766–775 (2006)

    Google Scholar 

  21. So, A.M.-C., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. B 109(2), 367–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sugihara, R., Gupta, R.K.: Sensor localization with deterministic accuracy guarantee. In: Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM 2011), Shanghai, pp. 1772–1780 (2011)

    Google Scholar 

  23. Zhou, K., Roumeliotis, S.I.: Multirobot active target tracking with combinations of relative observations. IEEE Trans. Robot. 27(4), 678–695 (2011)

    Article  Google Scholar 

  24. Zhu, Z., So, A.M.-C., Ye, Y.: Universal rigidity and edge sparsification for sensor network localization. SIAM J. Optim. 20(6), 3059–3081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Danzer, L., Grünbaum, B.: Über zwei Probleme bezüglich konvexer Körper von P. Erdős und V. L. Klee, Math. Z. 79, 95–99 (1962)

    Google Scholar 

  26. Grünbaum, B.: Convex Polytopes. Wiley-Interscience, London (1967)

    MATH  Google Scholar 

  27. Makai, E., Jr., H.Martini, On the number of antipodal or strictly antipodal pairs of points in finite subsets of \({\mathbb{R}}^{d}\). In: Gritzmann, P., Sturmfels B. (eds.) Appled Geometry and Discrete Mathematics, The V. Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci., Vol. 4, American Mathematical Society, Providence, RI, pp. 457–470 (1991)

    Google Scholar 

  28. Bezdek, K.: Classical Topics in Discrete Geometry. CMS Books in Mathematics, Springer, New York (2010)

    Book  MATH  Google Scholar 

  29. Bezdek, K., Schneider, R.: Covering large balls with convex sets in spherical space. Beiträge Algebra Geom. 51(1), 229–235 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Kadets, V.: Coverings by convex bodies and inscribed balls. Proc. Amer. Math. Soc. 133(5), 1491–1495 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Deza, A., Moriyama, S., Miyata, H., Xie, F.: Hyperplane arrangements with large average diameter: A computational approach. Adv. Stud. Pure Math. 62, 59–74 (2012)

    MathSciNet  Google Scholar 

  32. Deza, A., Xie, F.: Hyperplane arrangements with large average diameter, American Mathematical Society series and Centre de Recherches Mathématiques 48, 103–114 (2009)

    MathSciNet  Google Scholar 

  33. Santos, F.: A counterexample to the hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MATH  Google Scholar 

  34.  Böröczky, K.: On an extremum property of the regular simplex in S d, Intuitive Geometry (Siófok, 1985), 117–121, Colloq. Math. Soc. János Bolyai, 48, North-Holland, Amsterdam, 1987; MR0910705.

    Google Scholar 

  35. Peyerimhoff, N.: Simplices of maximal volume or minimal total edge length in hyperbolic space. J. London Math. Soc. (2) 66(3), 753–768 (2002). MR1934304

    Google Scholar 

  36. Ko, C-W., Lee, J., Steingrímsson, E.: The volume of relaxed Boolean-quadric and cut polytopes. Discret. Math. 163(1–3), 293–298 (1997)

    Article  MATH  Google Scholar 

  37. Edmonds, A.E., Hadjja, M., Martini, H.: Ortocentric simplices and biregularity. Results Math. 52, 41–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Arkus, N., Manoharan, V.N., Brenner, M.P.: Deriving finite sphere packings. SIAM J. Discret. Math. 25(4), 1860–1901 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bezdek, K.: On the maximum number of touching pairs in a finite packing of translates of a convex body. J. Comb. Theory A 98, 192–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bezdek, K.: Contact numbers for congruent sphere packings in Euclidean 3-space. Discret. Comput. Geom. 48(2), 298–309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bezdek, K., Reid, S.: On touching pairs, triplets, and quadruples in packings of congruent spheres, arXiv:1210.5756v1 [math.MG]1–19(2012)

    Google Scholar 

  42. Bowen, L.: Circle packing in the hyperbolic plane. Math. Phys. Electron. J. 6, 1–10 (2000)

    MathSciNet  Google Scholar 

  43. Hales, T. C.: A proof of the Kepler conjecture. Ann. Math. 162(2–3), 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14–15 (1974)

    MathSciNet  Google Scholar 

  45. Hayes, B.: The science of sticky spheres. Am. Sci. 100, 442–449 (2012)

    Article  Google Scholar 

  46. Hoy, R.S., Harwayne-Gidansky, J., O’Hern, C.S.: Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation. Phys. Rev. E 85 (2012). 051403

    Article  Google Scholar 

  47. Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Problemy Peredachi Informatsii 14, 3–25 (1978)

    MathSciNet  Google Scholar 

  48. Schütte, K., van der Waerden, B.L.: Das Problem der dreizehn Kugeln. Math. Ann. 125, 253–334 (1953)

    Google Scholar 

  49. Belk, M., Connelly, R.: Realizability of graphs. Discret. Comput. Geom. 37, 125–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Belk. M.: Realizability of graphs in three dimensions. Discret. Comput. Geom. 37, 139–162 (2007)

    Google Scholar 

  51. Colin de Verdière, Y.: Sur un nouvel invariant des graphes et un critère de planarité. J. Comb. Theory B 50(1), 1121 (1990)

    Google Scholar 

  52. van der Holst, H.: Two tree-width-like graph invariants. Combinatorica 23(4), 633–651 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Laurent, M., Varvitsiotis, A.: The Gram dimension of a graph. In: Mahjoub A.R., et al. (eds.) Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO 2012), Athens. LCS, vol. 7422, pp.  356–367. Springer (2012)

    Google Scholar 

  54. Laurent M., Varvitsiotis, A.: A new graph parameter related to bounded rank positive semidefinite matrix completions. Preprint at arXiv:1204.0734 to appear in Mathematical Programming, Series A. (16 February 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Deza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bezdek, K., Deza, A., Ye, Y. (2013). Selected Open Problems in Discrete Geometry and Optimization. In: Bezdek, K., Deza, A., Ye, Y. (eds) Discrete Geometry and Optimization. Fields Institute Communications, vol 69. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00200-2_18

Download citation

Publish with us

Policies and ethics