Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2265 Accesses

Abstract

The effect of partial confinement on the shape and volume of bubbles generated by injection of gas at a constant flow rate, into a highly viscous liquid is studied numerically and experimentally. By using the Boundary Element Method, numerical solutions of the Stokes equations for the viscous liquid yield the evolution of the surface of a bubble. These solutions and experiments show that cylindrical, conical, and pipe walls with periodic corrugations, concentric with the gas injection orifice in the horizontal bottom of the liquid, may strongly affect the shape and volume of the bubbles. Thus, the presence of walls could be used to control the size of the generated bubbles without changing the gas flow rate. A well-known scaling law for the volume of the bubbles generated by injection of gas at a high flow rate in a highly viscous, unconfined liquid is extended to take into account the presence of cylindrical or conical walls around the injection orifice. In addition, we study numerically the thickness film that is formed between the free surface of a bubble and the cylindrical walls in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajaev VS, Homsy GM (2006) Modeling shapes and dynamics of confined bubbles. Annu Rev Fluid Mech 38:277–307

    Article  Google Scholar 

  • Bretherton FP (1961) The motion of long bubbles in tubes. J. Fluid Mech. 10:166–188

    Google Scholar 

  • Cheng AH-D, Cheng DT (2005) Heritage and early history of the boundary element method. Eng Anal Boundary Elem 29:268–302

    Article  Google Scholar 

  • Corchero G, Medina A, Higuera FJ (2006) Effect of wetting conditions and flow rate on bubble formation at orifices submerged in water. Colloids Surf A Physicochem Eng Aspects 290:41–49

    Article  Google Scholar 

  • Costabel M (1986) Principles of boundary element methods. In: Lectures given at the first graduate summer course in computational physics finite elements in physics lausanne 1–10 Sept 1986, p 28

    Google Scholar 

  • Davidson JF, Schuler BOG (1960) Bubble formation at an orifice in a viscous liquid. Trans Inst Chem Eng 38:144–154

    Google Scholar 

  • Higuera FJ (2005) Injection and coalescence of bubbles in a very viscous liquid. J Fluid Mech 530:369–378

    Article  Google Scholar 

  • Hirasaki GJ, Lawson JB (1985) Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. SPE J 25:176–190

    Google Scholar 

  • Kovscek AR, Tretheway DC, Persoff P, Radke CJ (1995) Foam flow through a transparent rough-walled rock fracture. J Petrol Sci Eng 13:75–86

    Article  Google Scholar 

  • López-Villa A, Medina A, Higuera FJ (2011) Bubble growth by injection of gas into viscous liquids in cylindrical and conical tubes. Phys Fluids 23:102102

    Article  Google Scholar 

  • Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Pozrikidis C (2002) A practical guide to boundary element methods with the software library BEMLIB. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Russ JC (2002) The Image processing handbook. CRC Press, Boca Raton

    Google Scholar 

  • Wong H, Rumschitzki D, Maldarelli C (1998) Theory and experiment on the low-Reynolds-number expansion and contraction of a bubble pinned at a submerged tube tip. J Fluid Mech 356:93–124

    Article  Google Scholar 

  • Yan W, Miller CA, Hirasaki GJ (2006) Foam sweep in fractures for enhanced oil recovery. Colloids Surf A Physicochem Eng Aspects 282–283:348–359

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the I.P.N. for partial support through projects SIP20131821 and SIP20131821-IPN. We also acknowledge the CONACyT for partial support through the project SENER-CONACyT 146735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel López-Villa .

Editor information

Editors and Affiliations

Appendix A. The Green’s functions for Axi-symmetric flow.

Appendix A. The Green’s functions for Axi-symmetric flow.

This Appendix lists Green functions for axi-symmetric flow generated by a unit ring force located at \(({x}_{0}, {r}_{0})\) and pointing in the direction \(\mathbf{e}_{\alpha }\) with \(\alpha = { r}, { x}\). Define

$$\begin{aligned} Z&= x - x_{0} ,\\ L&= \sqrt{Z^{2} + (r + r_{0} )} ,\\ D&= \sqrt{Z^{2} + \sqrt{Z^{2} + (r + r_{0} )} } , \\ S&= \sqrt{Z^{2} + r^{2} + r_{0}^{2} } , \\ m&= \frac{{2(rr_{0} )^{{\frac{1}{2}}} }}{L}, \\ \end{aligned}$$

and the elliptic integrals

$$\begin{aligned} K\left( m \right)&= \mathop \smallint \limits _{0}^{{\frac{\pi }{2}}} \frac{{d\theta }}{{\sqrt{1 - m^{2} sen^{2} \theta } }}~,\\ E\left( m \right)&= \mathop \smallint \limits _{0}^{{\frac{\pi }{2}}} \sqrt{1 - m^{2} sen^{2} \theta d\theta } \end{aligned}$$

Then

$$\begin{aligned} G_{x}^{x}&= 4\frac{r}{L}\left( {K + E\frac{{Z^{2} }}{{D^{2} }}} \right) \! , \\ G_{r}^{x}&= 2\frac{Z}{L}\left( {K - E\frac{{S^{2} - r^{2} }}{{D^{2} }}} \right) \! ,\\ G_{r}^{x}&= 2\frac{{rZ}}{{r_{0} L}}\left( { - K + E\frac{{S^{2} - 2r_{0}^{2} }}{{D^{2} }}} \right) \! ,\\ G_{r}^{r}&= 2\frac{1}{{r_{0} L}}\left[ {k\left( {S^{2} + Z^{2} } \right) - E\left( {L^{2} + \frac{{Z^{2} S^{2} }}{{D^{2} }}} \right) } \right] \! ,\\ {{T_{x}^{x}}}_{x}&= 8\frac{{rZ^{3} }}{{D^{2} }}\left( {K - E\frac{{4S^{2} }}{{D^{2} }}} \right) \! ,\\ {{T_{x}^{x}}}_{r}&= T^{{x}_{x}}_{r} = - 4\frac{{Z^{2} }}{{D^{2} L~}}\left[ {K\frac{{S^{2} - 2r^{2} }}{{L^{2} }} - E\left( {1 + \frac{{8r_{0}^{2} \left( {2r_{0}^{2} - S^{2} } \right) }}{{D^{2} L^{2} }}} \right) } \right] \! ,\\ {{T_{r}^{x}}}_{r}&= - 4\frac{{rZ}}{L}\left[ {K\left( {\frac{1}{{r^{2} }} + \frac{{2Z^{2} }}{{D^{2} L^{2} }}} \right) - \frac{E}{{D^{2} }}\left( {6 - S^{2} \left( {\frac{1}{{r^{2} }} + \frac{{8Z^{2} }}{{D^{2} L^{2} }}} \right) } \right) } \right] \! ,\\ {{T_{x}^{r}}}_{x}&= - 4\frac{{rZ^{2} }}{{r_{0} D^{2} L}}\left[ {K\frac{{2r_{0}^{2} - S^{2} }}{{L^{2} }} + E\left( {1 + \frac{{8r_{0}^{2} \left( {2r^{2} - S^{2} } \right) }}{{D^{2} L^{2} }}} \right) } \right] \! ,\\ {{T_{x}^{r}}}_{r}&= T^{r_r}_{x} = - 4\frac{Z}{{r_{0} }}\left[ {K\left( {\frac{{Z^{2} S^{2} }}{{D^{2} L^{2} }} - 2} \right) + \frac{E}{{D^{2} }}\left( {2S^{2} - Z^{2} - \frac{{16r^{2} r_{0}^{2} Z^{2} }}{{D^{2} L^{2} }}} \right) } \right] \! ,\\ {{T_{r}^{r}}}_{r}&= - 4\frac{r}{L}\left[ \frac{K}{{r_{0} }}\left( {\frac{{Z^{2} \left( {S^{2} - 2r_{0}^{2} } \right) }}{{D^{2} L^{2} }} - \frac{{r^{2} - r_{0}^{2} - 2Z^{2} }}{{r^{2} }}} \right) \right. \\&\qquad \left. + \frac{E}{{D^{2} }}\left( {\frac{{8r_{0} Z^{2} \left( {S^{2} - 2r^{2} } \right) }}{{D^{2} L^{2} }} + \frac{{r^{2} \left( {r^{2} + r_{0}^{2} } \right) - S^{2} \left( {r_{0}^{2} + 2Z^{2} } \right) }}{{r^{2} r_{0} }}} \right) \right] \! . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

López-Villa, A., Medina, A. (2014). Growth of Bubbles in Reservoirs and its Consequences on the Foam Formation. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_7

Download citation

Publish with us

Policies and ethics