Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2258 Accesses

Abstract

We investigate the details of protostellar mass accretion, \(\dot{M}\), during the collapse of isolated, initially uniformly rotating, low-mass cores, using hydrodynamic models of star formation. The assumption of rigid rotation is supported by recent observations that there is no apparent correlation between the level of turbulence and fragmentation in dense cores, suggesting that turbulence works mainly before gravitationally bound pre-stellar cores form and that their inner parts are likely to be velocity coherent. We perform high-resolution calculations using the Smoothed Particle Hydrodynamics (SPH) code GADGET-2, modified by the inclusion of sink particles. We compare our results with theoretical models of star formation based on gravoturbulent fragmentation and with observational data. We find that on the small scales of low-mass, dense cores the details of mass accretion and the statistical properties of the resulting stellar ensembles bear little dependence on whether the contracting gas is turbulent or rotating as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams FC, Myers PC (2001) Modes of multiple star formation. Astrophys J 553:744–753

    Article  Google Scholar 

  • André P, Ward-Thompson D, Barsony M (1993) Submillimeter continuum observations of \(\rho \) Ophiuchi A: the candidate protostar VLA 1623 and prestellar clumps. Astrophys J 406:122–141

    Google Scholar 

  • André P, Motte F, Bacmann A (1999) Discovery of an extremely young accreting protostar in Taurus. Astrophys J 513:L57–L60

    Article  Google Scholar 

  • André P, Ward-Thompson D, Barsony M (2000) From prestellar cores to protostars: the initial conditions of star formation. In: Mannings V, Boss AP, Russell SS (eds) Prostostars and Planets IV. University of Arizona Press, Tucson, pp 59–96

    Google Scholar 

  • Attwood RE, Goodwin SP, Whitworth AP (2007) Adaptive smoothing lengths in SPH. Astron Astrophys 464:447–450

    Article  Google Scholar 

  • Attwood RE, Goodwin SP, Stamatellos D, Whitworth AP (2009) Simulating star formation in molecular cloud cores. IV. The role of turbulence and thermodynamics. Astron Astrophys 495:201–215

    Article  Google Scholar 

  • Ballesteros-Paredes J, Klessen RS, Vázquez-Semadeni E (2007) Molecular cloud turbulence and star formation. In: Reipurth VB, Jewitt D, Keil K (eds) Protostars and Planets V. University of Arizona Press, Tucson, pp 63–80

    Google Scholar 

  • Bate MR, Bonnell IA, Price NM (1995) Modelling accretion in protobinary systems. Mon Not R Astron Soc 277:362–376

    Google Scholar 

  • Bate MR, Bonnell IA, Bromm V (2003) The formation of a star cluster: predicting the properties of stars and brown dwarfs. Mon Not R Astron Soc 339:577–599

    Article  Google Scholar 

  • Bodenheimer P, Burkert A, Klein RI, Boss AP (2000) Multiple fragmentation of protostars. In: Mannings V, Boss AP, Russell SS (eds) Protostars and Planets V. University of Arizona Press, Tucson, pp 675–701

    Google Scholar 

  • Bontemps S, André P, Terebey S, Cabrit S (1996) Evolution of outflow activity around low-mass embedded young stellar objects. Astron Astrophys 311:858–872

    Google Scholar 

  • Boogert ACA, Hogerheijde MR, Blake GA (2002) High-resolution 4.7 micron Keck/NIRSPEC spectra of protostars. I. Ices and infalling gas in the disk of L1489 IRS. Astrophys J 568:761–770

    Article  Google Scholar 

  • Burkert A, Bodenheimer P (2000) Turbulent molecular cloud cores: rotational properties. Astrophys J 543:822–830

    Article  Google Scholar 

  • Caselli P, Benson PJ, Myers PC, Tafalla M (2002) Dense cores in dark clouds. XIV. N\(_{2}\)H\(^{+}\) (1–0) maps of dense cloud cores. Astrophys J 572:238–263

    Article  Google Scholar 

  • Ceccarelli C, Castets A, Caux E, Hollenbach D, Loinard L, Molinari S, Tielens AGGM (2000) The structure of the collapsing envelope around the low-mass protostar IRAS 16293–2422. Astron Astrophys 355:1129–1137

    Google Scholar 

  • Chen X (2008) High angular resolution observations of binary protostars. PhD thesis, The Ruperto-Carola University of Heidelberg, Germany

    Google Scholar 

  • Crapsi A, Caselli P, Walmsley MC, Tafalla M (2007) Observing the gas temperature drop in the high-density nucleus of L1544. Astron Astrophys 470:221–230

    Article  Google Scholar 

  • Federrath C, Banerjee R, Clark PC, Klessen RS (2010) Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys J 713:269–290

    Article  Google Scholar 

  • Di Francesco J, Evans NJ II, Caselli P, Myers PC, Shirley Y, Aikawa Y, Tafalla M (2007) An observational perspective of low-mass dense cores I: internal physical and chemical properties. In: Reipurth VB, Jewitt D, Keil K (eds) Protostars and Planets V. University of Arizona Press, Tucson, pp 17–32

    Google Scholar 

  • Furlan E, McClure M, Calvet N, Hartmann L, D’Alessio P, Forrest WJ, Watson DM, Uchida KI, Sargent B, Green JD, Heter TL (2008) Spitzer IRS spectra and envelope models of class I protostars in Taurus. Astrophys J Suppl Ser 176:184–215

    Article  Google Scholar 

  • Goodman AA, Barranco JA, Wilner DJ, Heyer MH (1998) Velocity coherence in dense cores. Astrophys Lett Commun 37:109–111

    Google Scholar 

  • Goodwin SP, Whitworth AP, Ward-Thompson D (2004a) Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity. Astron Astrophys 414:633–650

    Article  Google Scholar 

  • Goodwin SP, Whitworth AP, Ward-Thompson D (2004b) Simulating star formation in molecular cloud cores. II. The effects of different levels of turbulence. Astron Astrophys 423:169–182

    Article  Google Scholar 

  • Goodwin SP, Whitworth AP, Ward-Thompson D (2006) Star formation in molecular cores. III. The effect of the turbulent power spectrum. Astron Astrophys 452:487–492

    Article  Google Scholar 

  • Greene TP, Lada CJ (2002) Spectroscopic detection of a stellar-like photosphere in an accreting protostar. Astron J 124:2185–2193

    Article  Google Scholar 

  • Hartmann L, Kenyon SJ (1996) The FU Orionis phenomenon. Ann Rev Astron Astrophys 34:207–240

    Article  Google Scholar 

  • Hartmann L, Cassen P, Kenyon SJ (1997) Disk accretion and the stellar birthline. Astrophys J 475:770–785

    Article  Google Scholar 

  • Hennebelle P, Whitworth AP, Cha SH, Goodwin SP (2004) Protostellar collapse induced by compression II. Rotation and fragmentation. Mon Not R Astron Soc 348:687–701

    Article  Google Scholar 

  • Hubber DA, Goodwin SP, Whitworth AP (2006) Resolution requirements for simulating gravitational fragmentation using SPH. Astron Astrophys 450:881–886

    Article  Google Scholar 

  • Jappsen AK, Klessen RS (2004) Protostellar angular momentum evolution during gravoturbulent fragmentation. Astron Astrophys 423:1–12

    Article  Google Scholar 

  • Kenyon SJ, Gomez M, Marzke RO, Hartmann L (1994) New pre-main-sequence stars in the Taurus-Auriga molecular cloud. Astron J 108:251–261

    Article  Google Scholar 

  • Klessen RS, Burkert A (2000) The formation of stellar clusters: Gaussian cloud conditions. I. Astrophys J Suppl Ser 128:287–319

    Article  Google Scholar 

  • Klessen RS (2004) Comments of gravoturbulent star formation. Astrophys Space Sci 292:215–223

    Article  Google Scholar 

  • Larson RB (2003) The physics of star formation. Rep Prog Phys 66:1651–1697

    Article  Google Scholar 

  • Mac Low MM, Klessen RS (2004) Control of star formation by supersonic turbulence. Rev Mod Phys 76:125–194

    Article  Google Scholar 

  • Maret S, Ceccarelli C, Caux E, Tielens AGGM, Castets A (2002) Water emission in NGC 1333-IRAS 4. The physical structure of the envelope. Astron Astrophys 395:573–585

    Article  Google Scholar 

  • Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  Google Scholar 

  • Myers PC, Adams FC, Chen H, Schaff E (1998) Evolution of the bolometric temperature and luminosity of young stellar objects. Astrophys J 492:703–726

    Article  Google Scholar 

  • Schmeja S, Klessen RS (2004) Protostellar mass accretion rates from gravoturbulent fragmentation. Astron Astrophys 419:405–417

    Article  Google Scholar 

  • Shu FH (1977) Self-similar collapse of isothermal spheres and star formation. Astrophys J 214: 488–497

    Google Scholar 

  • Shu FH, Adams FC, Lizano S (1987) Star formation in molecular clouds: observation and theory. Ann Rev Astron Astrophys 25:23–81

    Article  Google Scholar 

  • Springel V (2005) The cosmological simulation code GADGET-2. Mon Not R Astron Soc 364:1105–1134

    Article  Google Scholar 

  • Stahler SW (1988) Deuterium and the stellar birthline. Astrophys J 332:804–825

    Article  Google Scholar 

  • Volgenau NH, Mundy LG, Looney LW, Welch WJ (2006) Dense cores with multiple protostars: the velocity fields of L1448 IRS 3, NGC 1333 IRAS 2, and NGC 1333 IRAS 4. Astrophys J 651:301–320

    Article  Google Scholar 

  • Walch S, Burkert A, Whitworth AP, Naab T, Gritschneder M (2009) Protostellar disks formed from rigidly rotating cores. Mon Not R Astron Soc 400:13–25

    Article  Google Scholar 

  • Whitworth AP (1998) The Jeans instability in smoothed particle hydrodynamics. Mon Not R Astron Soc 296:442–444

    Article  Google Scholar 

  • Whitworth AP, Ward-Thompson D (2001) An empirical model for protostellar collapse. Astrophys J 547:317–322

    Article  Google Scholar 

  • Young CH, Shirley YL, Evans NJ II, Rawlings JMC (2003) Tracing the mass during low-mass star formation. IV. Observations and modeling of the submillimeter continuum emission from class I protostars. Astrophys J Suppl Ser 145:111–145

    Article  Google Scholar 

  • Zhu Z, Hartmann L, Calvet N, Hernandez J, Muzerolle J, Tannirkulam AK (2007) The hot inner disk of FU Orionis. Astrophys J 669:483–492

    Google Scholar 

  • Zhu Z, Hartmann L, Gammie C (2009) Nonsteady accretion in protostars. Astrophys J 694: 1045–1055

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Consejo Nacional de Ciencia y Tecnología of Mexico (CONACyT) under the project CONACyT-EDOMEX-2011-C01-165873 and the Fondo Nacional de Ciencia, Tecnología e Innovación of Venezuela (FONACIT) under grant PC 201204710 (contract 112-1077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Klapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klapp, J., Sigalotti, L.D.G., Zavala, M. (2014). Stellar Mass Accretion Rates from Fragmentation of a Rotating Core. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_14

Download citation

Publish with us

Policies and ethics