Advertisement

Thermo-elasticity for Anisotropic Media in Higher Dimensions

  • Jens WirthEmail author
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 44)

Abstract

In this paper we develop tools to study the Cauchy problem for the system of thermo-elasticity in higher dimensions. The theory is developed for general homogeneous anisotropic media under non-degeneracy conditions. For degenerate cases a method of treatment is sketched and for the cases of cubic media and hexagonal media detailed studies are provided.

Keywords

Thermo-elasticity A-priori estimates Anisotropic media 

Mathematics Subject Classification

35B40 35B45 35Q72 74F05 74E10 

Notes

Acknowledgements

The paper was inspired by many discussions with Michael Reissig and also Ya-Guang Wang, who in particular raised the interest for dispersive decay rates for thermo-elastic systems and the applied decoupling techniques to deduce them. The author is also grateful to Otto Liess for pointing out some of his results on decay estimates for Fourier transforms of measure carried by singular surfaces.

References

  1. 1.
    Bannini, A., Liess, O.: Estimates for Fourier transforms of surface-carried densities on surfaces with singular points, II. Ann. Univ. Ferrara 52, 211–232 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Borkenstein, J.: L p-L q Abschätzungen der linearen Thermoelastizitätsgleichungen für kubische Medien im \(\mathbb{R}^{2}\). Diplomarbeit, Bonn (1993) Google Scholar
  3. 3.
    Brenner, P.: On L p-L p estimates for the wave equation. Math. Z. 145(3), 251–254 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Doll, M.S.: Zur Dynamik (magneto-) thermoelastischer Systeme im \(\mathbb{R}^{2}\). Dissertation, Konstanz (2004) Google Scholar
  5. 5.
    Duff, G.F.D.: The Cauchy problem for elastic waves in an anisotropic medium. Philos. Trans. R. Soc. Lond. Ser. A 252, 249–273 (1960) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Jachmann, K., Wirth, J.: Diagonalisation schemes and applications. Ann. Mat. Pura Appl. 189, 571–590 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jiang, S., Racke, R.: Evolution Equations in Thermo-Elasticity. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 112. Chapman & Hall/CRC, Boca Raton (2000) Google Scholar
  8. 8.
    Kato, T.: Perturbation Theory for Linear Operators, corr. printing of the 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, Berlin (1980) zbMATHGoogle Scholar
  9. 9.
    Liess, O.: Decay estimates for solutions of the system of crystal optics. Asymptot. Anal. 4, 61–95 (1991) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Liess, O.: Estimates for Fourier transforms of surface-carried densities on surfaces with singular points. Asymptot. Anal. 37, 329–362 (2004) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Liess, O.: Decay estimates for the solutions of the system of crystal acoustics for cubic crystals. In: Tose, N. (ed.) Recent Trends in Microlocal Analysis. RIMS Kôkyûroku, vol. 1412, pp. 1–13 (2005) Google Scholar
  12. 12.
    Liess, O.: Decay estimates for the solutions of the system of crystal acoustics for cubic crystals. Asymptot. Anal. 64, 1–27 (2009) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Miller, G.F., Musgrave, M.J.P.: On the propagation of elastic waves in aeolotropic media. III. Media of cubic symmetry. Proc. R. Soc. Lond. Ser. A 236, 352–383 (1957) MathSciNetGoogle Scholar
  14. 14.
    Musgrave, M.J.P.: On the propagation of elastic waves in aeolotropic media. I. General principles. Proc. R. Soc. Lond. Ser. A 226, 339–355 (1954) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Musgrave, M.J.P.: On the propagation of elastic waves in aeolotropic media. II. Media of hexagonal symmetry. Proc. R. Soc. Lond. Ser. A 226, 356–366 (1954) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Reissig, M., Wirth, J.: Anisotropic thermo-elasiticity in 2D—part I: a unified treatment. Asymptot. Anal. 57, 1–27 (2008) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ruzhansky, M.: Pointwise van der Corput lemma for functions of several variables. Funct. Anal. Appl. 43, 75–77 (2009) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ruzhansky, M.: Multidimensional decay in van der Corput lemma. Stud. Math. 208, 1–10 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ruzhansky, M., Smith, J.G.: Dispersive and Strichartz Estimates for Hyperbolic Equations with Constant Coefficients. MSJ Mem., vol. 22. Mathematical Society of Japan, Tokyo (2010) zbMATHGoogle Scholar
  20. 20.
    Ruzhansky, M., Wirth, J.: Dispersive estimates for hyperbolic systems with time-dependent coefficients. J. Differ. Equ. 251, 941–969 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sugimoto, M.: A priori estimates for higher order hyperbolic equations. Math. Z. 215, 519–531 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sugimoto, M.: Estimates for hyperbolic equations with non-convex characteristics. Math. Z. 222(4), 521–531 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wirth, J.: Anisotropic thermo-elasiticity in 2D—part II: applications. Asymptot. Anal. 57, 29–40 (2008) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Wirth, J.: Block-diagonalisation of matrices and operators. Linear Algebra Appl. 431, 895–902 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wirth, J.: Dispersive estimates in anisotropic thermo-elasticity. In: Begehr, H.G.W., Celebi, O.A., Gilbert, R.P. (eds.) Further Progress in Analysis. Proceedings of the 6th International ISAAC Congress, pp. 495–504. World Scientific, Singapore (2009) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut für Analysis, Dynamik und Modellierung, Fachbereich MathematikUniversität StuttgartStuttgartGermany

Personalised recommendations