Advertisement

A Note on a Class of Conservative, Well-Posed Linear Control Systems

  • Rainer PicardEmail author
  • Sascha Trostorff
  • Marcus Waurick
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 44)

Abstract

We discuss a class of linear control problems in a Hilbert space setting. The aim is to show that these control problems fit in a particular class of evolutionary equations such that the discussion of well-posedness becomes easily accessible. Furthermore, we study the notion of conservativity. For this purpose we require additional regularity properties of the solution operator in order to allow point-wise evaluations of the solution. We exemplify our findings by a system with unbounded control and observation operators.

Keywords

Linear control systems Well-posedness Conservativity Evolutionary equations 

Mathematics Subject Classification (2010)

93C05 93C20 93C25 

References

  1. 1.
    Curtain, R.F., Weiss, G.: Well posedness of triples of operators (in the sense of linear systems theory). In: Control and Estimation of Distributed Parameter Systems, 4th Int. Conf., Vorau, Austria, 1989. ISNM, vol. 91, pp. 41–59 (1988) Google Scholar
  2. 2.
    Engel, K.-J.: On the characterization of admissible control- and observation operators. Syst. Control Lett. 34(4), 225–227 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Jacob, B., Partington, J.R.: Admissibility of control and observation operators for semigroups: a survey. In: Ball, J.A., et al. (eds.) Current Trends in Operator Theory and Its Applications, Proceedings of the International Workshop on Operator Theory and Its Applications (IWOTA), Virginia Tech, Blacksburg, VA, USA, August 6–9, 2002. Operator Theory: Advances and Applications, vol. 149, pp. 199–221. Birkhäuser, Basel (2004) CrossRefGoogle Scholar
  4. 4.
    Jacob, B., Zwart, H.J.: Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. Operator Theory: Advances and Applications, vol. 223. Birkhäuser, Basel (2012) zbMATHCrossRefGoogle Scholar
  5. 5.
    Kalauch, A., Picard, R., Siegmund, S., Trostorff, S., Waurick, M.: A Hilbert space perspective on ordinary differential equations with memory term. arXiv:1204.2924 (2011)
  6. 6.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. 1: Abstract Parabolic Systems. Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge (2000) Google Scholar
  7. 7.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. 2: Abstract Hyperbolic-Like Systems over a Finite Time Horizon. Encyclopedia of Mathematics and Its Applications, vol. 75. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  8. 8.
    Picard, R.: A structural observation for linear material laws in classical mathematical physics. Math. Methods Appl. Sci. 32(14), 1768–1803 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Picard, R.: On a comprehensive class of linear material laws in classical mathematical physics. Discrete Contin. Dyn. Syst., Ser. S 3(2), 339–349 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Picard, R., McGhee, D.: Partial Differential Equations. A Unified Hilbert Space Approach. de Gruyter Expositions in Mathematics, vol. 55. de Gruyter, Berlin (2011) zbMATHCrossRefGoogle Scholar
  11. 11.
    Salamon, D.: Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. Am. Math. Soc. 300, 383–431 (1987) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Salamon, D.: Realization theory in Hilbert space. Math. Syst. Theory 21(3), 147–164 (1989) MathSciNetGoogle Scholar
  13. 13.
    Weiss, G.: Admissibility of unbounded control operators. SIAM J. Control Optim. 27(3), 527–545 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Weiss, G.: The representation of regular linear systems on Hilbert spaces. In: Control and Estimation of Distributed Parameter Systems, 4th Int. Conf., Vorau, Austria, 1988. ISNM, vol. 91, pp. 401–416 (1989) Google Scholar
  15. 15.
    Weiss, G., Tacsnak, M.: How to get a conservative well-posed linear system out of thin air. I: well-posedness and energy balance. ESAIM Control Optim. Calc. Var. 9, 247–274 (2003) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rainer Picard
    • 1
    Email author
  • Sascha Trostorff
    • 1
  • Marcus Waurick
    • 1
  1. 1.Institute for AnalysisTU DresdenDresdenGermany

Personalised recommendations