Acoustical Measurements on Experimental Violins in the Hanneforth Collection

Part of the Current Research in Systematic Musicology book series (CRSM, volume 1)


In 2011, the collection of Prof. Wolfgang Hanneforth was donated to the Museum of Decorative and Industrial Arts in Hamburg (MKG), comprising some 250 string and wind instruments. The focus of Hanneforth’s 30 year collecting activity was on experimental constructions and innovations in the 19th and 20th century. Since the foundation of the patent office (“Kaiserliches Patentamt”) in 1877 more than 300 patents have been granted on innovative violin constructions in Germany alone. Some of the unusual violins, their constructions and acoustics are discussed here: a violin with a fold in the top, or with the strings attached to a bridge on the top, or relatively flat and without a waist, or with a cornet replacing the wooden body. How will these instruments sound? Guided by some of the basic principles of violin acoustics, seven of these experimental instruments are investigated and referenced against a valuable Stradivari violin and against a student level instrument, both not part of the collection. Section 1 introduces into some of the basic principles of violin construction, Sect. 2 briefly explains the measurement method and summarizes target acoustical properties using a fine example of a Stradivari violin and a moderate example of a conventional violin. Section 3 holds results for the investigated violins and discusses construction modifications in the light of the outlined principles and the employed references.


  1. Ayers, R. D., Eliason, L. J., & Mahgerefteh, D. (1985). The conical bore in musical acoustics. American Journal of Physics, 53, 58–537.CrossRefGoogle Scholar
  2. Bissinger, G. (1992a). Effect of f-hole shape, area, and position on violin cavity modes below 2 kHz. Journal of Catgut Acoustical Society, 2(2), 12–17.Google Scholar
  3. Bissinger, G. (1992b). Effect of violin cavity volume (height) changes on the cavity modes below 2 kHz. Journal of Catgut Acoustical Society, 2(2), 18–21.Google Scholar
  4. Bissinger, G. (2008). Structural acoustics of good and bad violins. Journal of the Acoustical Society of America, 124(3), 1764–1773.CrossRefGoogle Scholar
  5. Cremer, L. (1981). Physik der Geige (Engl. The physics of the violin), S. Hirzel Verlag Stuttgart.Google Scholar
  6. Dünnwald, H. (1982). Messung von Geigenfrequenzgängen. Acustica, 51, 282.Google Scholar
  7. Dünnwald, H. (1984). Akustische Messungen an zahlreichen Violinen und Ableitung objektiver Kriterien für deren klanglichen Eigenschaften. PhD thesis, RWTH Aachen.Google Scholar
  8. Dünnwald, H. (1991). Deduction of objective quality parameters on old and new violins. Journal of Catgut Acoustical Society, 1(7), 1–5.Google Scholar
  9. Fletcher, N. H., & Rossing, T. D. (1998). The physics of musical instruments. New York: Springer.MATHGoogle Scholar
  10. General Technical Report FPL–GTR–113. (1999). Wood handbook. Wood as an engineering material (Ed.) United States Department of Agriculture, Madison, Wisconsin.Google Scholar
  11. Gough, C. (2010). A finite element approach towards understanding violin structural modes. Journal of the Acoustical Society of America, 127(3), 1791.MathSciNetCrossRefGoogle Scholar
  12. Hutchins, C. M. (1981). The acoustics of violin plates. Scientific American, 245, 170–186.CrossRefGoogle Scholar
  13. Hutchins, C. M. (1985). Effects of an air-body coupling on the tone and paying qualities of violins. Journal of Catgut Acoustical Society, 44, 12–15.Google Scholar
  14. Hutchins, C. M. (1994). A measurable result of bi-tri octave plate tuning. Journal of the Acoustical Society of America, 95(5), 2913.CrossRefGoogle Scholar
  15. Hutchins, C. M. & Benade, V. (1997). Research Papers in Violin Acoustics 1975–1993, Vol. I + II, ASA, Woodbury. Google Scholar
  16. Hutchins, C. M., & Voskuil, D. (1993). Mode tuning for the violin maker. Journal of Catgut Acoustical Society, 2(4), 5–9.Google Scholar
  17. Jahnel, F. (1981). Die Gitarre und ihr Bau (Engl. The guitar and ist manufacturing). Fachbuchreihe das Muskinstrument Bd.25, Verlag Das Musikinstrument, Frankfurt a. M.Google Scholar
  18. Jansson, E. V., Molin, N.-E., & Saldner, H. O. (1994). On eigenmodes of the violin–Electronic holography and admittance measurements. Journal of the Acoustical Society of America, 95(2), 1100–1105.CrossRefGoogle Scholar
  19. Jansson, E. V., Moral, J. A., & Niewczyk, J. (1988). Experiments with free violin plates. Journal of Catgut Acoustical Society, 1(2), 2–6.Google Scholar
  20. Knott, G.A. (1987). A modal analysis of the violin using MSC/NASTRAN and PATRAN. MSc thesis, Naval Postgraduate School, Monterey, CA.Google Scholar
  21. Marshall, K. D. (1985). Modal analysis of a violin. Journal of the Acoustical Society of America, 77(2), 695–709.CrossRefGoogle Scholar
  22. Mathews, M. V., & Kohut, J. (1973). Electronic Simulation of violin resonances. Journal of the Acoustical Society of America, 53, 1620–1626.CrossRefGoogle Scholar
  23. Meinel, H. (1937). Über Frequenzkurven von Geigen. Akustische Zeitschrift, 2, 22–33 and 62–71.Google Scholar
  24. Meinel, H. (1939). Akustische Eigenschaften klanglich hervorragender Geigen. Akustische Zeitschrift, 4, 89.Google Scholar
  25. Molin, N.-E., Lindgren, L.-E., & Jansson, E. V. (1988). Parameters of violin plates and their influence on the plate modes. Journal of the Acoustical Society of America, 83(1), 281–290.CrossRefGoogle Scholar
  26. Moral, J. A., & Jansson, E. V. (1982). Eigenmodes, input admittance, and the function of the violin. Acustica, 50(5), 329–337.Google Scholar
  27. Newton, W. (1836). Repertory of patent inventions (Vol. 8, p. 171). United Kingdom: Sherwood Gilbert and Piper.Google Scholar
  28. Reinicke, W. (1973). Die Übertragungseigenschaften des Streichinstrumentenstegs. PhD thesis, Technical University of Berlin.Google Scholar
  29. Rossing, T. D. (2010). The science of string instruments. New York: Springer.CrossRefGoogle Scholar
  30. Saldner, H. O., Molin, N.-E., & Jansson, E. V. (1996). Vibration modes of the violin forced via the bridge and action of the soundpost. Journal of the Acoustical Society of America, 100(2), 1168–1177.CrossRefGoogle Scholar
  31. Schleske, M. (2002). Empirical tools in contemporary violin making: part II: psychoacoustic analysis and use of acoustical tools. Catgut Acoustical Society Journal 4 (5) (Series II).Google Scholar
  32. Weinreich, G. (1997). Directional tone color. Journal of the Acoustical Society of America, 101(4), 2338–2346.CrossRefGoogle Scholar
  33. Zopf, S. R. (2000). Untersuchung neuer und historischer akustisch- optischer Meßmethoden im Geigenbau. Master‘s thesis, Universität Wien.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Design, Media & InformationUniversity of Applied SciencesHamburgGermany

Personalised recommendations