Abstract
In this work, we detail a methodology for estimating the state of a microaerial vehicle (MAV) as it transitions between different operating environments with varying applicable sensors. We ensure that the estimate is smooth and continuous throughout and provide an associated quality measure of the state estimate. We address the challenge of maintaining consistency between local and global measurements and propose a strategy to recursively estimate the transform between different coordinate frames. We close with experiments that validate the approach and the resulting performance as a MAV navigates between mixed indoor and outdoor environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Shanghai, China, pp. 20–25 (May 2011)
Julier, S.J., Uhlmann, J.K.: A new extension of the kalman filter to nonlinear systems. In: Kadar, I. (ed.) Proc. of SPIE, vol. 3068, pp. 182–193 (July 1997)
Merwe, R.V.D., Wan, E.A., Julier, S.I.: Sigma-point kalman filters for nonlinear estimation: Applications to integrated navigation. In: Proc. of AIAA Guidance, Navigation, and Controls Conf., Providence, RI (August 2004)
Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 2878–2883 (May 2009)
Bachrach, A.G.: Autonomous flight in unstructured and unknown indoor environments. Master’s thesis, MIT, Cambridge, MA (September 2009)
Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Anchorage, AK, pp. 21–28 (May 2010)
Carlson, J.: Mapping large urban environments with GPS-aided SLAM. Ph.D. dissertation, CMU, Pittsburgh, PA (July 2010)
Schleicher, D., Bergasa, L.M., Ocaña, M., Barea, R., López, E.: Real-time hierarchical GPS aided visual SLAM on urban environments. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 4381–4386 (May 2009)
Moore, D.C., Huang, A.S., Walter, M., Olson, E.: Simultaneous local and global state estimation for robotic navigation. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 3794–3799 (May 2009)
Weinmann, A.: Uncertain Models and Robust Control. Springer, New York (1991)
Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An atlas framework for scalable mapping. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Taipei, Taiwan, vol. 2, pp. 1899–1906 (September 2003)
Estrada, C., Neira, J., Tardos, J.D.: Hierarchical SLAM: Real-time accurate mapping of large environments. IEEE Trans. Robot. 21(4), 588–596 (2005)
Dellaert, F., Kaess, M.: Square root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. Robot. Research 25(12), 1181–1203 (2006)
Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)
Censi, A.: On achievable accuracy for pose tracking. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 1–7 (May 2009)
Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Rayleigh, NC, vol. 4, p. 850 (March 1987)
Dryanovski, I., Morris, W., Jizhong, X.: Multi-volume occupancy grids: An efficient probabilistic 3d mapping model for micro aerial vehicles. In: Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Taipei, Taiwan, pp. 1553–1559 (October 2010)
Olson, E.: Real-time correlative scan matching. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 4387–4393 (May 2009)
Ascending Technologies, GmbH (February 2012), http://www.asctec.de/
Robot Operating System (February 2012), http://www.ros.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Shen, S., Michael, N. (2013). State Estimation for Indoor and Outdoor Operation with a Micro-Aerial Vehicle. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-00065-7_20
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-00064-0
Online ISBN: 978-3-319-00065-7
eBook Packages: EngineeringEngineering (R0)