Nuclear Muon Capture in Hydrogen Isotopes

  • Claude PetitjeanEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


We present two precision experiments in nuclear muon capture which are performed at PSI’s 600 MeV proton accelerator. The muon capture rates in hydrogen and deuterium are measured using the lifetime method and time projection chambers as active muon stopping targets. The MuCap experiment—muon capture on the proton—is in its final analysis. We present a result of the singlet \(\mu p\) capture rate \(\varLambda _S\) which can be directly related to \(g_P\), the pseudoscalar form factor in weak interactions, and which is predicted by low energy heavy baryon chiral perturbation theory. The MuSun experiment measures the doublet capture rate in the \(\mu d\) atom using a new cryogenic time projection chamber at 34 K. By effective field theory a unique low energy constant LEC can be determined which calibrates the rate of the main \(pp\) fusion reaction of the sun.


Capture Rate Effective Field Theory Time Projection Chamber Muon Beam Muon Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.V. Balin et al., High precision measurement of the singlet \(\mu \)p capture rate in H\(_2\) gas, PSI proposal R-97-05.2 (2001),
  2. 2.
    V.A. Andreev et al., Phys. Rev. Lett. 99, 032002 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    V. Bernard, N. Kaiser, U.-G. Meissner, Phys. Rev. D 50, 6899 (1994)Google Scholar
  4. 4.
    V. Bernard, L. Elouadrhiri, U.-G. Meissner, J. Phys. G 28, R1 (2002)Google Scholar
  5. 5.
    J. Govaerts, J.L. Lucio-Martinez, Nucl. Phys. A 678, 110 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    T. Gorringe, H.W. Fearing, Rev. Mod. Phys. 76, 31 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    P. Kammel, K. Kubodera, Annu. Rev. Nucl. Part. Sci. 60, 32753 (2010)Google Scholar
  8. 8.
    J. Egger, M. Hildebrandt, C. Petitjean, Nucl. Instr. Meth. A 628, 199 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Ganzha et al., Nucl. Instr. Meth. A 578, 485 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D.B. Chitwood et al., Phys. Rev. Lett. 99, 032001 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H. Überall, Phys. Rev. 119, 365 (1960)Google Scholar
  12. 12.
    H.C. von Baeyer, D. Leitner, Phys. Rev. A 19, 1371 (1979)Google Scholar
  13. 13.
    V. Bernard, T.R. Hemmert, U.-G. Meissner, Nucl. Phys. A 686, 290 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ando, F. Myhrer, K. Kubodera, Phys. Rev. C 63, 015203 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A. Czarnecki, W.J. Marciano, A. Shirlin, Phys. Rev. Lett. 99, 032003 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    MuSun Collaboration ( V.A. Andreev, E.J. Barnes, R.M. Carey, V.A. Ganzha, A. Gardestig, T. Gorringe, F.E. Gray, D.W. Hertzog, M. Hildebrandt, L. Ibanez, P. Kammel, B. Kiburg, S.A. Kizilgul, S. Knaack, P.A. Kravtsov, A.G. Krivshich, K. Kubodera, B. Lauss, M. Levchenko, X. Luo, K.R. Lynch, E.M. Maev, O.E. Maev, F. Mulhauser, M.H. Murray, F. Myhrer, A. Nadtochy, C. Petitjean, G.E. Petrov, J. Phillips, R. Prieels, N. Raha, G.N. Schapkin, N. Schroeder, G.G. Semenchuk, M.A. Soroka, V. Tishchenko, A.A. Vasilyev, A.A. Vorobyov, N. Voropaev, M.E. Vznuzdaev, F. Wauters, P. Winter
  17. 17.
    L.E. Marinucci et al., Phys. Rev. C 83, 014002Google Scholar
  18. 18.
    L.E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani, Phys. Rev. Lett. 108, 052502 (2012)Google Scholar
  19. 19.
    B. Aharmim et al., Phys. Rev. C 75, 045502 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    D.V. Balin et al., PNPI preprint 2729 (2007). Phys. Elem. Part. At. Nucl. 42, 185 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.MuCap and MuSun CollaborationPaul Scherrer InstituteVilligenSwitzerland

Personalised recommendations