QED Calculations on Highly Charged Ions, Using a Unified MBPT-QED Approach

  • Ingvar LindgrenEmail author
  • Sten Salomonson
  • Daniel Hedendahl
  • Johan Holmberg
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


There is presently a great interest in studying QED effects in highly charged ions by means of large accelerators, and the best information is usually gained from the study of multi-electron ions. It might then be possible to detect the combined effect of QED and electron correlation, which has so far never been observed. That could be possible also from accurate laser or X-ray data. For the corresponding theoretical analysis it will then be necessary to treat the effects of QED and electron correlation simultaneously in a coherent manner. This is not possible with presently available techniques but will require the new generation of atomic calculations that is now being developed at our laboratory. The calculations have to be performed in the Coulomb gauge, and a procedure for renormalization in that gauge has very recently been tested for hydrogen-like ions. Work is now in progress to perform unified MBPT-QED calculations on multi-electron systems.


Wave Operator Coulomb Gauge Relativistic State Vector MBPT Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Adkins, One-loop renormalization of Coulomb-gauge QED. Phys. Rev. D 27, 1814–20 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    G. Adkins, One-loop vertex function in Coulomb-gauge QED. Phys. Rev. D 34, 2489–92 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Artemyev, V.M. Shabaev, V.A. Yerokhin, G. Plunien, G. Soff, QED calculations of the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 71, 062104 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S. Blundell, Calculations of the screened self-energy and vacuum polarization in Li-like, Na-like, and Cu-like ions. Phys. Rev. A 47, 1790–1803 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    G.E. Brown, D.G. Ravenhall, On the interaction of two electrons. Proc. R. Soc. Lond. Ser. A 208, 552–59 (1951)Google Scholar
  6. 6.
    C.T. Chantler, J.A. Lowe, I.P. Grant, Multiconfiguration Dirac-Fock calculations in open-shell atoms: convergence methods and satellite spectrs of the copper K \(\alpha \) photoemission spectra). Phys. Rev. A 82, 052505 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    R.D. Deslattes, E.G. Kessler, P. Indelicato, L. deBilly, E. Lindroth, J. Aron, X-ray transition energies: new approach to a comprehensive evaluation. Rev. Mod. Phys. 75, 15–19 (2003)Google Scholar
  8. 8.
    T.R. DeVore, D.N. Crosby, E.G. Myers, Improved measurement of the \(1s2s\,^1S_0-1s2p\,^3P_1\) interval in heliumlike silicon. Phys. Rev. Lett. 100, 243001 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Gell-Mann, F. Low, Bound states in quantum field theory. Phys. Rev. 84, 350–354 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    D. Hedendahl, Towards a Relativistic Covariant Many-Body Perturbation Theory, Ph.D. thesis, University of Gothenburg, Gothenburg, Sweden, 2010Google Scholar
  11. 11.
    D. Hedendahl, J. Holmberg, Coulomb-gauge self-energy calculation for high-Z hydrogenic ions. Phys. Rev. A 85, 012514 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Holmberg, Master’s thesis, University of Gothenburg, Gothenburg, Sweden, 2011Google Scholar
  13. 13.
    J. Holmberg, Scalar vertex operator for bound-state QED in Coulomb gauge. Phys. Rev. A 84, 062504 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    I. Lindgren, The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space. J. Phys. B 7, 2441–70 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    I. Lindgren, Relativistic many-body theory: a new field-theoretical approach (Springer, New York, 2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    I. Lindgren, B. Åsén, S. Salomonson, A.M. Mårtensson-Pendrill, QED procedure applied to the quasidegenerate fine-structure levels of He-like ions. Phys. Rev. A 64, 062505 (2001)Google Scholar
  17. 17.
    I. Lindgren, J. Morrison, Atomic Many-Body Theory, 2nd edn. (Springer, Berlin, 1986) (Reprinted 2009)Google Scholar
  18. 18.
    I. Lindgren, S. Salomonson, B. Åsén, The covariant-evolution-operator method in bound-state QED. Phys. Rep. 389, 161–261 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    I. Lindgren, S. Salomonson, D. Hedendahl, Many-body-QED perturbation theory: connection to the two-electron Bethe-Salpeter equation. Einstein centennial review paper. Can. J. Phys. 83, 183–218 (2005)Google Scholar
  20. 20.
    I. Lindgren, S. Salomonson, D. Hedendahl, Many-body procedure for energy-dependent perturbation: merging many-body perturbation theory with QED. Phys. Rev. A 73, 062502 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Malenfant, Renormalized Coulomb-gauge self-energy function. Phys. Rev. D 35, 1525–1527 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    P. Mohr, Self-energy correction to one-electron energy levels in a strong Coulomb field. Phys. Rev. A 46, 4421–24 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P.J. Mohr, G. Plunien, G. Soff, QED corrections in heavy atoms. Phys. Rep. 293, 227–372 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P.J. Mohr, G. Soff, Nuclear size correction to the electron self energy. Phys. Rev. Lett. 70, 158–161 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D. Silver, M.R. Tarbutt, Precision measurement of the \(1s2p\,^3P_2-^3P_1\) fine structure interval in heliumlike fluorine. Phys. Rev. Lett. 82, 4200–4203 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    E.G. Myers, M.R. Tarbutt, Measurement of the \(1s2p ^3 P_0-^3P_1\) fine structure interval in heliumlike magnesium. Phys. Rev. A 61, 010501R (1999)CrossRefGoogle Scholar
  27. 27.
    H. Persson, I. Lindgren, L.N. Labzowsky, G. Plunien, T. Beier, G. Soff, Second-order self-energy-vacuum-polarization contributions to the Lamb shift in highly charged few-electron ions. Phys. Rev. A 54, 2805–13 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    H. Persson, I. Lindgren, S. Salomonson, P. Sunnergren, Accurate vacuum-polarization calculations. Phys. Rev. A 48, 2772–78 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    D.R. Plante, W.R. Johnson, J. Sapirstein, Relativistic all-order many-body calculations of the n = 1 and n = 2 states of heliumlike ions. Phys. Rev. A 49, 3519–3530 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Shabaev, Two-times Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 356, 119–228 (2002)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    J. Sucher, Foundations of the relativistic theory of many electron atoms. Phys. Rev. A 22, 348–362 (1980)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, M.M. Sysak, O.M. Zherebtsov, G. Soff, Evaluation of the two-photon exchange graphs for the \(2p_{1/2}-2s\) transition in Li-like Ions. Phys. Rev. A 64, 032109 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ingvar Lindgren
    • 1
    Email author
  • Sten Salomonson
    • 1
  • Daniel Hedendahl
    • 1
  • Johan Holmberg
    • 1
  1. 1.Physics DepartmentUniversity of GothenburgGothenburgSweden

Personalised recommendations