Advertisement

Crystals, Critical Fields, Collision Points, and a QED Analogue of Hawking Radiation

  • Ulrik I. UggerhøjEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

During the penetration of a crystal close to a crystallographic direction, the trajectory of the penetrating particle—due to the sequence of binary encounters—becomes indistinguishable from the trajectory obtained from ‘smearing’ (averaging) the charges along the string or plane, see Fig. 1.

Keywords

Black Hole Critical Field Lorentz Factor Radiation Emission Compton Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I gratefully acknowledge the initiatives of Profs. Greiner, Newman and Vilakazi to arrange not only an exceptionally interesting symposium with inspiring delegates from many subjects and countries, but also for arranging it in a very exciting environment. Finally, I wish to thank Dr. Weber and his family and staff at Makutsi Safari Farm for their dedication to making the symposium the success it was.

References

  1. 1.
    P.A. Doyle, P.S. Turner, Relativistic Hartree-Fock X-ray and electron scattering factor. Acta Crystallogr. Sect. A 24, 390–397 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    E. Bonderup, J.U. Andersen, R.H. Pantell, Channeling radiation. Ann. Rev. Nucl. Part. Sci. 33, 453–504 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    J. Bak, J.A. Ellison, B. Marsh, F.E. Meyer, O. Pedersen, J.B.B. Petersen, E. Uggerhøj, K. Østergaard, S.P. Møller, A.H. Sørensen, M. Suffert, Channeling radiation from 2–55 GeV/c electrons and positrons: (i). planar case. Nucl. Phys. B 254, 491–527 (1985)Google Scholar
  4. 4.
    A.H. Sørensen, Channeling, bremsstrahlung and pair creation in single crystals. NATO ASI Ser. 255, 91–118 (1991)CrossRefGoogle Scholar
  5. 5.
    E. Uggerhøj, U.I. Uggerhøj, Strong crystalline fields–a possibility for extraction from the LHC. Nucl. Instrum. Methods Phys. Res., Sect. B 234(1–2), 31–39 (2005), Relativistic Channeling and Related Coherent Phenomena in Strong FieldsGoogle Scholar
  6. 6.
    Particle Data Group, C. Amsler, M. Doser, M. Antonelli et al., Review of particle physics, Phys. Lett. B 667, 1–5 (2008)Google Scholar
  7. 7.
    J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931)ADSCrossRefGoogle Scholar
  9. 9.
    F. Sauter, Zum “Kleinschen Paradoxon”. Z. Phys. 73, 547–552 (1931)ADSGoogle Scholar
  10. 10.
    O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157–165 (1929)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    M. Born, L. Infeld, Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425–451 (1934)ADSCrossRefGoogle Scholar
  12. 12.
    R.P. Feynman, A Relativistic cut-off for classical electrodynamics. Phys. Rev. 74, 939–946 (1948)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A.I. Nikishov, V.I. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field. Zh. Eksp. Teor. Fiz. 46, 776–796 (1964)MathSciNetGoogle Scholar
  14. 14.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic Quantum Theory (Elsevier, UK, 1971)Google Scholar
  15. 15.
    L.I. Schiff, Quantum effects in the radiation from accelerated relativistic electrons. Am. J. Phys. 20, 474–478 (1952)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)zbMATHGoogle Scholar
  17. 17.
    J. Schwinger, The quantum correction in the radiation by energetic accelerated electrons. Proc. Natl. Acad. Sci. USA 40, 132–136 (1954)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    W. Tsai, A. Yildiz, Motion of an electron in a homogeneous magnetic field–modified propagation function and synchrotron radiation. Phys. Rev. D 8, 3446–3460 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    W. Tsai, Magnetic bremsstrahlung and modified propagation function. Spin-0 charged particles in a homogeneous magnetic field. Phys. Rev. D 8, 3460–3469 (1973)Google Scholar
  20. 20.
    V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998)CrossRefGoogle Scholar
  21. 21.
    V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Quantum effects in radiation emitted by ultrahigh energy electrons in aligned crystals. Phys. Lett. A 114, 511–515 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    A. Belkacem, G. Bologna, M. Chevallier, N. Cue, M.J. Gaillard, R. Genre, J. Kimball, R. Kirsch, B. Marsh, J.P. Peigneux, J.C. Poizat, J. Remillieux, D. Sillou, M. Spighel, C.R. Sun, Strong field interactions of high energy electrons and photons in ge crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 33, 1–10 (1988)Google Scholar
  23. 23.
    K. Kirsebom, Y.V Kononets, U. Mikkelsen, S.P. Møller, E. Uggerhøj, T. Worm, K. Elsener, C. Biino, N. Doble, S. Ballestrero, P. Sona, R.O. Avakian, K.A. Ispirian, S.P. Taroian, S.H. Connell, J.P.F. Sellschop, Z.Z. Vilakazi, R. Moore, M.A. Parker, A. Baurichter, V.M. Strakhovenko, Radiation emission and its influence on the motion of multi-GeV electrons and positrons incident on a single diamond crystal. Nucl. Instr. Meth. B 174, 274–296 (2001)Google Scholar
  24. 24.
    V.M. Katkov, V.N. Baier, Coherent and incoherent radiation from high-energy electron and the lpm effect in oriented single crystal. Phys. Lett. A 353, 91–97 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    P. Chen, K. Yokoya, Field-gradient effect in quantum beamstrahlung. Phys. Rev. Lett. 61, 1101–1104 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    T. Himel, J. Siegrist, Quantum effects in linear collider scaling laws, SLAC-PUB-3572, 1–7 (1985)Google Scholar
  27. 27.
    K. Yokoya, Quantum correction to beamstrahlung due to the finite number of photons. Nucl. Instr. Meth. A 1–16, 251 (1986)Google Scholar
  28. 28.
    R.J. Noble, Beamstrahlung from colliding electron-positron beams with negligible disruption. Nucl. Instr. Meth. A 256, 427–433 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    P. Chen, V.I. Telnov, Coherent pair creation in linear colliders. Phys. Rev. Lett. 63, 1796–1799 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    R. Blankenbecler, S.D. Drell, N. Kroll, Pair production from photon-pulse collisions. Phys. Rev. D 40, 2462–2476 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Radiation from relativistic particles colliding in a medium in the presence of an external field. Zh. Eksp. Teor. Fiz. 94, 125–139 (1988)Google Scholar
  32. 32.
    R. Blankenbecler, S.D. Drell, Quantum treatment of beamstrahlung. Phys. Rev. D 36, 277–288 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Solov’yov, A. Schäfer, C. Hofmann, Quasiclassical approximation for the beamstrahlung process. Phys. Rev. E 47, 2860–2867 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    A.V. Solov’yov, A. Schäfer, Pair creation by photons in the field of an electron or positron pulse of high density. Phys. Rev. E 48, 1404–1409 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    R. Blankenbecler, S.D. Drell, Quantum beamstrahlung: Prospects for a photon-photon collider. Phys. Rev. Lett. 61, 2324–2327 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    P.C.W. Davies, Thermodynamics of black holes. Rep. Prog. Phys. 41, 1313–1355 (1978)ADSCrossRefGoogle Scholar
  37. 37.
    W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    K.A. Ispirian, S.M. Darbinian, A.T. Margarian, New mechanism for Unruh radiation of channeled particles (1989)Google Scholar
  40. 40.
    K.T. McDonald, Hawking-Unruh Radiation and Radiation of a Uniformly Accelerated Charge (California, Quantum Aspects of Beam Physics, 1998), p. 643Google Scholar
  41. 41.
    V.N. Baier, Radiative polarization of electrons in storage rings. Usp. Fiziol. Nauk 105, 441–478 (1972)CrossRefGoogle Scholar
  42. 42.
    V.N. Baier, V.M. Katkov, Electroproduction of electron-positron pair in oriented crystal at high energy. Phys. Lett. A 373, 1874–1879 (2009)ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    H.C. Rosu, Unruh Effect as Particular Frenet-Serret Vacuum Radiation and Detection Proposals (Quantum Aspects of Beam Physics, California, 2004), pp. 164–175Google Scholar
  44. 44.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)Google Scholar
  45. 45.
    U.I. Uggerhøj, Relativistic ps\(^-\) and ps. Phys. Rev. A 73, 052705 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    B. Müller, W. Greiner, J. Rafelski, Interpretation of external fields as temperature. Phys. Lett. A 63, 181–183 (1977)ADSCrossRefGoogle Scholar
  47. 47.
    B. Müller, W. Greiner, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyAarhus UniversityAarhusDenmark

Personalised recommendations