Generation Model of Particle Physics and the Parity of the Neutral Pion

  • Brian Robson
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


The chapter emphasizes that the Generation Model is obtained from the Standard Model of particle physics essentially by interchanging the roles of the mass eigenstate and weak eigenstate quarks. In the Generation Model the mass eigenstate quarks of the same generation form weak isospin doublets analogous to the mass eigenstate leptons of the same generation while the weak eigenstate quarks form the constituents of hadrons. This allows a simpler and unified classification scheme in terms of only three conserved additive quantum numbers for both leptons and quarks. This unified classification scheme of the Generation Model makes feasible a composite model of the leptons and quarks, which predicts that the weak eigenstate quarks are mixed-parity states. In the Standard Model pions have parity \(P = -1\) and the chapter describes that this value of the parity of pions led to the overthrow of both parity conservation and CP conservation in weak interactions. In the Generation Model pions exist in mixed-parity states leading to an understanding of the apparent CP violation observed by Christenson et al. in the decay of the long-lived neutral kaon.


Weak Interaction Lepton Number Decay Amplitude Charged Pion Neutral Pion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.A. Robson, A generation model of the fundamental particles. Int. J. Mod. Phys. E 11, 555–566 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    B.A. Robson, Relation between strong and weak isospin. Int. J Mod. Phys. E 13, 999–1016 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Evans, B.A. Robson, Comparison of quark mixing in the standard and generation models. Int J. Mod. Phys. E 15, 617–625 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    E. Gottfried, V.F. Weisskopf, Concepts of Particle Physics, vol. 1 (Oxford University Press, New York, 1984)Google Scholar
  5. 5.
    B.A. Robson, The generation model and the origin of mass. Int. J. Mod. Phys. E 18, 1773–1780 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    B.A. Robson, A quantum theory of gravity based on a composite model of leptons and quarks. Int. J. Mod. Phys. E 20, 733–745 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Morrison, B.A. Robson, 2$\pi $ decay of the $K^{0}_{L}$ meson without CP violation. Int. J. Mod. Phys. E 18, 1825–1830 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    B.A. Robson, Parity of charged pions. Int. J. Mod. Phys. E 20, 1677–1686 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Robson, Parity of neutral pion. Int. J. Mod. Phys. E 20, 1961–1965 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    W. Chinowsky, J. Steinberger, Absorption of negative pions in deuterium: parity of pion. Phys. Rev. 95, 1561–1564 (1954)ADSCrossRefGoogle Scholar
  11. 11.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964)ADSCrossRefGoogle Scholar
  12. 12.
    G. Zweig, CERN Reports 8182/TH 401 and 8419/TH 412 (1964), unpublished, but reproduced in D.B. Lichtenberg, S.P. Rosen, Developments in the Quark Theories of Hadrons, Vol. 1. (Hadronic Press, Nonamtum Mass, 1980)Google Scholar
  13. 13.
    R. Brown et al., Observations with electron-sensitive plates exposed to cosmic radiation. Nature 163, 82–87 (1949)ADSCrossRefGoogle Scholar
  14. 14.
    G.G. Rochester, C.C. Butler, Evidence for the existence of new unstable elementary particles. Nature 160, 855–857 (1947)ADSCrossRefGoogle Scholar
  15. 15.
    R.H. Dalitz, Decay of $\tau $ mesons of known charge. Phys. Rev. 94, 1046–1051 (1954)ADSCrossRefGoogle Scholar
  16. 16.
    T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957)ADSCrossRefGoogle Scholar
  18. 18.
    R.L. Garwin, L.M. Lederman, M. Weinrich, Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415–1417 (1957)ADSCrossRefGoogle Scholar
  19. 19.
    J.I. Friedman, V.L. Telegdi, Nuclear emulsion evidence for parity nonconservation in the decay chain $\pi ^{+} - \mu ^{+} - e^{+}$. Phys. Rev. 105, 1681–1682 (1957)ADSCrossRefGoogle Scholar
  20. 20.
    M. Gell-Mann, A. Pais, Behavior of neutral particles under charge conjugation. Phys. Rev. 97, 1387–1389 (1955)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F. Eisler, R. Plano, N. Samios, M. Schwartz, J. Steinberger, Systematics of $\Lambda ^{0}$ and $\theta ^{0}$ decay. Nuovo Cimento 5, 1700–1710 (1957)CrossRefGoogle Scholar
  22. 22.
    L.D. Landau, On the conservation laws for weak interactions. Nucl. Phys. 3, 127–131 (1957)CrossRefGoogle Scholar
  23. 23.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2$\pi $ decay of the $K^{0}_{2}$ meson. Phys. Rev. Lett. 13, 138–140 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    P.K. Kabir, The CP Puzzle: Strange Decays of the Neutral Kaon (Academic Press, London, 1968)Google Scholar
  25. 25.
    A. Franklin, The Neglect of Experiment (Cambridge University Press, Cambridge UK, 1986)CrossRefGoogle Scholar
  26. 26.
    R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193–198 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    E.C.G. Sudarshan, R.E. Marshak, Chirality invariance and the universal Fermi interaction. Phys. Rev. 109, 1860–1862 (1958)ADSCrossRefGoogle Scholar
  28. 28.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)ADSCrossRefGoogle Scholar
  29. 29.
    M. Kobayashi, T. Maskawa, CP-violation in renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    D.H. Perkins, Introduction to High Energy Physics, 4th edn. (Cambridge University Press, Cambridge UK, 2000)CrossRefGoogle Scholar
  31. 31.
    B.A. Robson, A generation model of composite leptons and quarks. Int. J. Mod. Phys. E 14, 1151–1169 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    E. Abouzaid et al., Determination of the parity of the neutral pion via its four-electron decay. Phys. Rev. Lett. 100, 182001 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Brian Robson
    • 1
  1. 1.Department of Theoretical Physics, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations