Nuclei in Strongly Magnetised Neutron Star Crusts

  • Rana Nandi
  • Debades BandyopadhyayEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


We discuss the ground state properties of matter in outer and inner crusts of neutron stars under the influence of strong magnetic fields. In particular, we demonstrate the effects of Landau quantization of electrons on compositions of neutron star crusts. First we revisit the sequence of nuclei and the equation of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of strong magnetic fields and most recent versions of the theoretical and experimental nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this calculation and each lattice volume is replaced by a spherical cell. The coexistence of two phases of nuclear matter—liquid and gas, is considered in this case. We obtain the equilibrium nucleus corresponding to each baryon density by minimizing the free energy of the cell. We perform this calculation using Skyrme nucleon-nucleon interaction with different parameter sets. We find nuclei with larger mass and charge numbers in the inner crust in the presence of strong magnetic fields than those of the zero field case for all nucleon-nucleon interactions considered here. However, SLy4 interaction has dramatic effects on the proton fraction as well as masses and charges of nuclei. This may be attributed to the behaviour of symmetry energy with density in the sub-saturation density regime. Further we discuss the implications of our results to shear mode oscillations of magnetars.


Neutron Star Strong Magnetic Field Symmetry Energy Charge Neutrality Condition Neutron Star Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank S. K. Samaddar, J. N. De, B. Agrawal, D. Chatterjee, I. N. Mishustin and W. Greiner for many fruitful discussions. We also acknowledge the support under the Research Group Linkage Programme of Alexander von Humboldt Foundation.


  1. 1.
    R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    C. Thompson, R.C. Duncan, Mon. Not. Roy. Astron. Soc. 275, 255 (1995)ADSGoogle Scholar
  3. 3.
    A.L. Watts, arXiv:1111.0514.Google Scholar
  4. 4.
    S. Chakrabarty, D. Bandyopadhyay, S. Pal, Phys. Rev. Lett. 78, 2898 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    D. Lai, Rev. Mod. Phys. 62, 629 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    D. Lai, S.L. Shapiro, Astrophys. J. 383, 745 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    R. Nandi, D. Bandyopadhyay, J. Phys. Conf. Ser. 312, 042016 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    R. Nandi, D. Bandyopadhyay, I.N. Mishustin, W. Greiner, Astrophys. J. 736, 156 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 436, 265 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    E. Suraud, Nucl. Phys. A 462, 109 (1987)Google Scholar
  16. 16.
    H. Krivine, J. Treiner, O. Bohigas, Nucl. Phys. A 336, 115 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    M. Brack, C. Guet, H.B. Hâkansson, Phys. Rep. 123, 275 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sil, J.N. De, S.K. Samaddar, X. Vinas, M. Centelles, B.K. Agrawal, S.K. Patra, Phys. Rev. C 66, 045803 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    E. Chabanat et al., Nucl. Phys. A 635, 231 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    B.K. Agrawal, S. Shlomo, V. Kim Au, Phys. Rev. C 68, 031304 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Watts, T.E. Strohmayer, Adv. Space. Res. 40, 1446 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A.L. Piro, Astrophys. J. 634, L153 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    P.N. McDermott, H.M. van Horn, C.J. Hansen, Astrophys. J. 325, 725 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    B.L. Schumaker, K.S. Thorne, Mon. Not. R. Astron. Soc. 203, 457 (1983)MathSciNetADSGoogle Scholar
  26. 26.
    H. Sotani, K.D. Kokkotas, N. Stergioulas, Mon. Not. Astron. Soc. 375, 261 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H. Sotani, Mon. Not. Astron. Soc. 417, L70 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A.W. Steiner, A.L. Watts, Phys. Rev. Lett. 103, 181101 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Ogata, S. Ichimaru, Phys. Rev. A 42, 4867 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    T. Strohmayer, H.M. van Horn, S. Ogata, H. Iyetomi, S. Ichimaru, Astrophys. J. 375, 679 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    P. Haensel, “Neutron Star crusts” in Lecture Notes in Physics: Physics of Neutron Star Interiors, ed. by D. Blaschke, N.K. Glendenning, A. Sedrakian, vol. 578 (Springer, Heidelberg, 2001), p. 127Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Astroparticle Physics and Cosmology DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Astroparticle Physics and Cosmology Division and Centre for Astroparticle PhysicsSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations