Advertisement

Structure and Cooling of Neutron and Hybrid Stars

  • S. SchrammEmail author
  • V. Dexheimer
  • R. Negreiros
  • T. Schürhoff
  • J. Steinheimer
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The study of neutron stars is a topic of central interest in the investigation of the properties of strongly compressed hadronic matter. Whereas in heavy-ion collisions the fireball, created in the collision zone, contains very hot matter, with varying density depending on the beam energy, neutron stars largely sample the region of cold and dense matter with the exception of the very short time period of the existence of the proto-neutron star. Therefore, neutron star physics, in addition to its general importance in astrophysics, is a crucial complement to heavy-ion physics in the study of strongly interacting matter. In the following, model approaches will be introduced to calculate properties of neutron stars that incorporate baryons and quarks. These approaches are also able to describe the state of matter over a wide range of temperatures and densities, which is essential if one wants to connect and correlate star observables and results from heavy-ion collisions. The effect of exotic particles and quark cores on neutron star properties will be considered. In addition to the gross properties of the stars like their masses and radii their expected inner composition is quite sensitive to the models used. The effect of the composition can be studied through the analysis of the cooling curve of the star. In addition, we consider the effect of rotation, as in this case the particle composition of the star can be modified quite drastically.

Notes

Acknowledgments

We acknowledge the use of the CSC computer facilities at Frankfurt university for our work. R. N. acknowledges financial support from the LOEWE program HIC for FAIR. T. S. is supported by the Nuclear Astrophysics Virtual Institute (NAVI).

References

  1. 1.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    B. Kiziltan, A. Kottas, S.E. Thorsett, arXiv:1011.4291v1 [astro-ph.GA], (2010)Google Scholar
  3. 3.
    I. Vidana, D. Logoteta, C. Providencia, A. Polls, I. Bombaci, Europhys. Lett. 94, 11002 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    H. Chen, M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. D 84, 105023 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    H. Djapo, B.-J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    R.P. Negreiros, V. Dexheimer, S. Schramm, Phys. Rev. C 85, 035805 (2012) [arXiv:1011.2233 [astro-ph.HE]]Google Scholar
  8. 8.
    M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012) [arXiv:1108.0559 [astro-ph.SR] (2011)]Google Scholar
  11. 11.
    J. Steinheimer, S. Schramm, Phys. Lett. B 696, 257 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.O. Heinke, W.C.G. Ho, Astrophys. J. 719, L167 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 57, 2576 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    V. Dexheimer, S. Schramm, Astrophys. J. 683, 943 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    T. Schürhoff, S. Schramm, V. Dexheimer, Astrophys. J. 724, L74 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    F. Ozel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    K. Fukushima, Phys. Lett. B 591, 277 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    V.A. Dexheimer, S. Schramm, Phys. Rev. C 81, 045201 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    R. Negreiros, V.A. Dexheimer, S. Schramm, Phys. Rev. C 82, 035803 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Fodor, S.D. Katz, JHEP 0404, 050 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    C.E. Detar, T. Kunihiro, Phys. Rev. D 39, 2805 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    V. Dexheimer, S. Schramm, D. Zschiesche, Phys. Rev. C 77, 025803 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    V. Dexheimer, G. Pagliara, L. Tolos, J. Schaffner-Bielich, S. Schramm, Eur. Phys. J. A 38, 105 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Steinheimer, S. Schramm, H. Stöcker, Phys. Rev. C 84, 045208 (2011) [arXiv:1108.2596 [hep-ph]]Google Scholar
  29. 29.
    J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    R. Negreiros, S. Schramm, F. Weber, Phys. Lett. B 718, 1176 (2013) [arXiv:1103.3870 [astro-ph]]Google Scholar
  31. 31.
    R. Negreiros, S. Schramm, F. Weber, Phys. Rev. D 85, 104019 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • S. Schramm
    • 1
    Email author
  • V. Dexheimer
    • 1
  • R. Negreiros
    • 1
  • T. Schürhoff
    • 1
  • J. Steinheimer
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesJ.W. Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations