Advertisement

Astronomical Tests of General Relativity and the Pseudo-Complex Theory

  • Thomas BollerEmail author
  • Andreas Müller
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Gravitation is very well described by Einstein’s General Relativity. However, several theoretical predictions like the existence of curvature singularities and event horizons are under debate. This motivated to modify the standard theory of gravity. Here, we contrast predictions made by General Relativity with the pseudo-complex field theory proposed recently. Among them we study the gravitational redshift effect, perihelion shift, orbital motion, timing measurements and spectral lines. We consider supermassive black holes as ideal testbeds to test the theoretical predictions in the regime of strong gravity. In particular, we investigate the innermost centers of active galaxies and the Galactic Centre. This involves high-performance astronomical instruments of the next generation. We present feasibility studies with the proposed Athena X-ray experiment and with the upcoming GRAVITY near-infrared instrument to be mounted at the Very Large Telescope.

Keywords

Black Hole Event Horizon Accretion Disc Very Long Baseline Interferometry Active Galactic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

TB and AM greatly acknowledge extensive scientific discussions with P. Hess, W. Greiner, T. Schönenbach and G. Caspar on the topics presented in this paper. TB is much obliged to W. Greiner for his longstanding scientific support. We thank M. Dovciak and J. Svoboda from the Astronomical Institute of the Academy of Science in Prag, Czech Republic, who significantly contributed in writing up Sect. 3.5. TB is greateful to S. Gillessen for intense discussion on the Galactic Center research.

References

  1. 1.
    P.O. Hess, W. Greiner, Pseudo-complex general relativity. Int. J. Mod. Phys. E 18, 51–77 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.Phys.), 189–196 (1916)Google Scholar
  3. 3.
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Caspar et al., Pseudo-complex general relativity: Schwarzschild, Reissner-Nordström and Kerr solutions. Int. J. Mod. Phys. E 21(1250015), 1–39 (2012)Google Scholar
  5. 5.
    T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, Experimental tests of pseudo-complex General relativity, arXiv:1209.2815 [gr-qc] (2012)Google Scholar
  6. 6.
    M. Camenzind, Compact Objects in Astrophysics: White Dwarfs Neutron Stars and Black Holes (Springer, New York, 2007)Google Scholar
  7. 7.
  8. 8.
    F.H. Vincent et al., in The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies, ed. by M.R. Morris, Q.D. Wang, F. Yuan. Proceedings of a workshop held at Shanghai, China, 19–23 Oct 2009. (Astronomical Society of the Pacific, San Francisco, 2011), p. 275Google Scholar
  9. 9.
    F. Eisenhauer et al., GRAVITY: observing the universe in motion. The Messenger 143, 16–24 (2011)ADSGoogle Scholar
  10. 10.
    R. Genzel et al., Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    V.L. Fish et al., 1.3 mm wavelength VLBI of Sagittarius A*: detection of time-variable emission on event horizon scales. ApJ 727, 36 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.S. Lu et al., Multiwavelength VLBI observations of Sagittarius A*. A &A 525, 76 (2011)ADSGoogle Scholar
  13. 13.
    S. Doeleman et al., Imaging an event horizon: submm-VLBI of a super massive black hole (2012), http://de.arxiv.org/abs/0906.3899
  14. 14.
    F.H. Vincent et al., Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole. MNRAS 412, 653 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Eisenhauer et al., GRAVITY: getting to the event horizon of Sgr A\(^*\). SPIE 7013, 69 (2008)ADSGoogle Scholar
  16. 16.
    A.C. Fabian et al., 1H 0707–495 in 2011: an X-ray source within a gravitational radius of the event horizon. MNRAS 419, 116 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Th. Boller, in Soft X-ray reflection and strong and weak field limit determination in Narrow-Line Seyfert 1 Galaxies, Exploring Fundamental Issues in Nuclear Physics, ed. by D. Bandyopadhyay. Proceedings of the Symposium on Advances in Nuclear Physics in Our Time, (World Scientific Publishing Co. Pte. Ltd., 2012) ISBN-13 978–981-4355-72-8Google Scholar
  18. 18.
    K. Nandra, ATHENA: The advanced telescope for high energy astrophysics, the X-ray Universe 2011, Presentations of the conference held in Berlin, Germany, 27–30 June 2011. Available online at: http://xmm.esac.esa.int/external/, articel id.022, 2011
  19. 19.
    A. Müller, M. Camenzind, Relativistic emission lines from accreting black holes. The effect of disk truncation on line profiles. A &A 413, 861 (2004)ADSGoogle Scholar
  20. 20.
    S. Gillessen et al., The orbit of the star S2 around SGR A* from very large telescope and keck data. ApJ 707, L114 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    K. Iwasawa et al., Flux and energy modulation of redshifted iron emission in NGC 3516: implications for the black hole mass. MNRAS 355, 1073 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    A.C. Fabian et al., X-ray reflection in the narrow-line Seyfert 1 galaxy 1H 0707–495. MNRAS 353, 1071 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A. Müller, M. Wold, On the signatures of gravitational redshift: the onset of relativistic emission lines. A &A 457, 485 (2006)ADSGoogle Scholar
  24. 24.
    M. Dovciak et al., Relativistic spectral features from X-ray-illuminated spots and the measure of the black hole mass in active galactic nuclei. MNRAS 350, 745 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    L. Strüder et al., The wide-field imager for IXO: status and future activities. SPIE 7732, 46 (2010)ADSGoogle Scholar
  26. 26.
    Y.B. Zel’dovich, I.D. Novikov, The radiation of gravity waves by bodies moving in the field of a collapsing star. Sov. Phys. Dokl. 9, 246 (1964)ADSGoogle Scholar
  27. 27.
    E.E. Salpeter, Accretion of interstellar matter by massive objects. ApJ 140, 796 (1964)ADSCrossRefGoogle Scholar
  28. 28.
    D. Lynden-Bell, Galactic nuclei as collapsed old quasars. Nature 223, 690 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Bardeen et al., Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. ApJ 178, 347 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    C.T. Cunningham, J.M. Bardeen, The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. ApJ 183, 237 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Tanaka et al., Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Nature 375, 659 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    A.C. Fabian, K. Iwasawa, Broad Fe-K lines from Seyfert galaxies. Adv. Space Res. 25, 471–480 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    K. Nandra et al., An XMM-Newton survey of broad iron lines in Seyfert galaxies. MNRAS 382, 194 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Miller et al., in Relativistic Iron Lines in Galactic Black Holes: Recent Results and Lines in the ASCA Archive, The Tenth Marcel Grossmann Meeting ed. by Mário Novello; Santiago Perez Bergliaffa; Remo Ruffini. Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, Brazil, 20–26 -July 2003. Singapore: World Scientific Publishing, in 3 volumes, ISBN 981-256-6678 (set), ISBN 981-256-980-4 (Part A), ISBN 981-256-979-0 (Part B), ISBN 981-256-978-2 (Part C), 2005, XLVIII + 2492 p.: 2005, p. 1296, 2005Google Scholar
  35. 35.
    C.S. Reynolds, in Compton Reflection and Iron Fluorescence in Active Galactic Nuclei and Galactic Black Hole Candidates, High Energy Processes in Accreting Black Holes, ed. by J. Poutanen, R. Svensson. ASP Conference Series 161, ISBN 1-886733-81-3 (1999), p. 178 (1999)Google Scholar
  36. 36.
    A.J. Young, C.S. Reynolds, Iron line reverberation mapping with constellation-X. ApJ 529, 101 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    A.C. Fabian et al., Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Max Planck-Institute for extraterrestrial physicsGarchingGermany
  2. 2.Technische Universiät MünchenExcellence Cluster UniverseGarchingGermany

Personalised recommendations