Advertisement

The Thermal Model and the Tsallis Distribution at the Large Hadron Collider

  • J. CleymansEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

An analysis is presented of identified particles at the Large Hadron Collider. Possible deviations from standard statistical distributions are investigated by considering in detail the Tsallis distribution. Matter-antimatter production is discussed within the framework of chemical equilibrium in p-p and heavy ion collisions.

Keywords

Large Hadron Collider Transverse Momentum Thermal Model Star Collaboration Transverse Momentum Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Numerous discussions with S. Kabana, A. Kalweit, I. Kraus, K. Redlich, H. Oeschler, N. Sharma, A. Sorin and D. Worku are at the basis of the results presented here.

References

  1. 1.
    C. Caso et al. (Particle Data Group), Eur. Phys. J. 3, 1 (2008)Google Scholar
  2. 2.
    R. Hagedorn, Supp. Nuovo Cimento III, 147 (1965)Google Scholar
  3. 3.
    J. Cleymans, D. Worku, Mod. Phys. Lett. A 26, 1197 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S. Chatterjee, S. Gupta, R.M. Godbole, Phys. Rev. C 81, 044907 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    W. Broniowski, W. Florkowski, Phys. Lett. B 490, 223 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    W. Broniowski, contribution to the Proceedings of the Mini-Workshop “Few-Quark Problems”, Bled, Slovenia, 8–15 July 2000, arXiv:hep-ph/0008112Google Scholar
  7. 7.
    W. Broniowski, W. Florkowski, L.Y. Glozman, Phys. Rev. D 70, 117503 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237C (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Becattini, J. Mannninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S. Borsanyi et al. (Wuppertal-Budapest Collaboration), JHEP 1009, 073 (2010)Google Scholar
  12. 12.
    M. Cheng, S. Ejiri, P. Hegde, F. Karsch, O. Kaczmarek, E. Laermann, R.D. Mawhinney, C. Miao et al., Phys. Rev. D 81, 054504 (2010)Google Scholar
  13. 13.
    B.I. Abelev et al. (STAR), Phys. Rev. C 75, 064901 (2007)Google Scholar
  14. 14.
    A. Adare et al. (PHENIX), Phys. Rev. C 83, 064903 (2011)Google Scholar
  15. 15.
    K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 71, 1655 (2011)Google Scholar
  16. 16.
    V. Khachatryan et al. (CMS), JHEP 05, 064 (2011)Google Scholar
  17. 17.
    G. Aad et al. (ATLAS Collaboration), New J. Phys. 13, 053033 (2011)Google Scholar
  18. 18.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Phys. A 261, 534 (1998)CrossRefGoogle Scholar
  20. 20.
    J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    B.I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 034909 (2009)Google Scholar
  24. 24.
    K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 106, 072002 (2010)Google Scholar
  25. 25.
    M. Danysz, J. Pniewski, Phil. Mag. 44, 348 (1953)Google Scholar
  26. 26.
    D. Hahn, H. Stöcker, Nucl. Phys. A 476 (1988)Google Scholar
  27. 27.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    B.I. Abelev et al. (STAR Collaboration), Science 328, 58 (2010)Google Scholar
  29. 29.
    R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    F. Becattini, Z. Phys. C 76, 269 (1997)CrossRefGoogle Scholar
  31. 31.
    F. Becattini, U. Heinz, Z. Phys. C 69, 485 (1996)CrossRefGoogle Scholar
  32. 32.
    K. Redlich, J. Cleymans, H. Oeschler, A. Tounsi, Acta Phys. Pol. B 33, 1609 (2002)Google Scholar
  33. 33.
    P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0304013, Invited Review in Quark Gluon Plasma 3, ed. by R.C. Hwa, X.N. Wang, (World Scientific Publishing, 2004)Google Scholar
  34. 34.
    P. Braun-Munzinger, J. Cleymans, H. Oeschler, K. Redlich, Nucl. Phys. A 697, 902 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    S. Wheaton, J. Cleymans, J. Phys. G 31, S1069 (2005) Google Scholar
  36. 36.
    S. Wheaton, J. Cleymans, M. Hauer, Comput. Phys. Commn. 180, 84 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, N. Sharma, Phys. Rev. C 84, 054916 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, S., Phys. Lett. B 697, 203 (2011)Google Scholar
  39. 39.
    C. Alt et al. (NA49 Collaboration), Phys. Rev. C 73, 044910 (2005)Google Scholar
  40. 40.
    C. Alt et al. (NA49 Collaboration), Phys. Rev. C 77, 024903 (2008)Google Scholar
  41. 41.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.UCT-CERN Research Centre and Department of PhysicsUniversity of Cape TownCape TownSouth Africa

Personalised recommendations