Advertisement

The QGP Phase in Relativistic Heavy-Ion Collisions

  • E. L. BratkovskayaEmail author
  • V. P. Konchakovski
  • O. Linnyk
  • W. Cassing
  • V. Voronyuk
  • V. D. Toneev
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results—including the partonic equation of state—in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus collisions from low SIS to RHIC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons as well as in their transverse mass spectra.

Keywords

Elliptic Flow Baryon Octet Transverse Mass Spectrum Partonic Phase PHSD Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work supported in part by the HIC for FAIR framework of the LOEWE program and by DFG.

References

  1. 1.
    E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    M.H. Thoma, J. Phys, G 31, L7 (2005)Google Scholar
  3. 3.
    M.H. Thoma, Nucl. Phys. A 774, 307 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A. Peshier, W. Cassing, Phys. Rev. Lett. 94, 172301 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    I. Arsene et al., Nucl. Phys. A 757, 1 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    B.B. Back et al., Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Adams et al., Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    K. Adcox et al., Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hirano, M. Gyulassy, Nucl. Phys. A 769, 71 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Juchem, W. Cassing, C. Greiner, Phys. Rev. D 69, 025006 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    S. Juchem, W. Cassing, C. Greiner, Nucl. Phys. A 743, 92 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    W. Cassing, Eur. Phys. J. ST 168, 3 (2009)Google Scholar
  14. 14.
    W. Cassing, Nucl. Phys. A 795, 70 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    E.L. Bratkovskaya, W. Cassing, V.P. Konchakovski, O. Linnyk, Nucl. Phys. A 856, 162 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Aoki et al., J. High Energy Phys. 0906, 088 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W. Ehehalt, W. Cassing, Nucl. Phys. A 602, 449 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    H.-U. Bengtsson, T. Sjöstrand, Comp. Phys. Commun. 46, 43 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    J. Aichelin, K. Werner, Phys. Rev. C 79, 064907 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Alt et al., NA49 Collaboration. Phys. Rev. C 66, 054902 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    C. Alt et al., Phys. Rev. C 77, 024903 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S.S. Adler et al., Phys. Rev. C 69, 034909 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    I.G. Bearden et al., Phys. Rev. Lett. 94, 162301 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    E.L. Bratkovskaya, S. Soff, H. Stöcker, M. van Leeuwen, W. Cassing, Phys. Rev. Lett. 92, 032302 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    J. Geiss, W. Cassing, C. Greiner, Nucl. Phys. A 644, 107 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    T. Anticic et al., Phys. Rev. C 80, 034906 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    F. Antinori et al., Phys. Lett. B 595, 68 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    F. Antinori et al., J. Phys. G: Nucl. Phys. 32, 427 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    M. Nasim, L. Kumar, P.K. Netrakanti, B. Mohanty, Phys. Rev. C 82, 054908 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    X. Gong et al., J. Phys. G 38, 124146 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    E.L. Bratkovskaya, W. Cassing, U. Mosel, Phys. Lett. B 424, 244 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    V.P. Konchakovski et al., Phys. Rev. C 85, 011902(R) (2012)Google Scholar
  39. 39.
    S.A. Voloshin, A.M. Poskanzer, Phys. Lett. B 474, 27 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    V.P. Konchakovski et al., arXiv:1201.3320 [nucl-th]Google Scholar
  41. 41.
    S.A. Voloshin, J. Phys. G 34, S883 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    M. Shimomura et al., PoS WPCF2011, 070 (2011)Google Scholar
  43. 43.
    G. Torrieri, Phys. Rev. C 76, 024903 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • E. L. Bratkovskaya
    • 2
    • 1
    Email author
  • V. P. Konchakovski
    • 3
  • O. Linnyk
    • 3
  • W. Cassing
    • 3
  • V. Voronyuk
    • 2
    • 4
    • 5
  • V. D. Toneev
    • 2
    • 5
  1. 1.Institute for Theoretical PhysicsUniversity of FrankfurtFrankfurtGermany
  2. 2.Frankfurt Institute for Advanced StudyFrankfurt am MainGermany
  3. 3.Institute for Theoretical PhysicsUniversity of GiessenGiessenGermany
  4. 4.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  5. 5.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations