Advertisement

RHIC and LHC Phenomena with a Unified Parton Transport

  • Ioannis Bouras
  • Andrej El
  • Oliver Fochler
  • Felix Reining
  • Florian Senzel
  • Jan Uphoff
  • Christian Wesp
  • Zhe Xu
  • Carsten GreinerEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.

Keywords

Large Hadron Collider Transverse Momentum Heavy Quark Elliptic Flow Radiative Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the Center for the Scientific Computing (CSC) at Frankfurt for the computing resources. This work was supported by the Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse.

References

  1. 1.
    S. Scott Adler et al., Elliptic flow of identified hadrons in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. Lett. 91, 182301 (2003)Google Scholar
  2. 2.
    J. Adams et al., Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. Lett. 92, 052302 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    B.B. Back et al., Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. C 72, 051901 (2005)Google Scholar
  4. 4.
    J. Adams et al., Transverse momentum and collision energy dependence of high p(T) hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003)Google Scholar
  5. 5.
    C. Adler et al., Centrality dependence of high p(T) hadron suppression in Au+Au collisions at \(\sqrt{s_{NN}} = 130\) GeV. Phys. Rev. Lett. 89, 202301 (2002)Google Scholar
  6. 6.
    K. Adcox et al., Suppression of hadrons with large transverse momentum in central Au+Au collisions at \(\sqrt{s_{NN}} = 130\) GeV. Phys. Rev. Lett. 88, 022301 (2002)Google Scholar
  7. 7.
    F. Wang, Measurement of jet modification at RHIC. J. Phys. G 30, S1299–S1304 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    H. Stöcker, Collective Flow signals the Quark Gluon Plasma. Nucl. Phys. A 750, 121–147 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Xu, C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade. Phys. Rev. C 71, 064901 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A. El, Z. Xu, C. Greiner, Thermalization of a color glass condensate and review of the ’Bottom-Up’ scenario. Nucl. Phys. A 806, 287–304 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Xu, C. Greiner, Shear viscosity in a gluon gas. Phys. Rev. Lett. 100, 172301 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A. El, A. Muronga, Z. Xu, C. Greiner, Shear viscosity and out of equilibrium dissipative hydrodynamics. Phys. Rev. C 79, 044914 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Xu, C. Greiner, H. Stöcker, PQCD calculations of elliptic flow and shear viscosity at RHIC. Phys. Rev. Lett. 101, 082302 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Xu, C. Greiner, Elliptic flow of gluon matter in ultrarelativistic heavy- ion collisions. Phys. Rev. C 79, 014904 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    O. Fochler, Z. Xu, C. Greiner, Towards a unified understanding of jet-quenching and elliptic flow within perturbative QCD parton transport. Phys. Rev. Lett. 102, 202301 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    K. Aamodt et al., Elliptic flow of charged particles in Pb+Pb collisions at \(\sqrt{s_{_{NN}}} = 2.76\) TeV. Phys. Rev. Lett. 105, 252302 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Adams et al., Azimuthal anisotropy in Au + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. C 72, 014904 (2005) Google Scholar
  18. 18.
    K. Aamodt et al., Suppression of charged particle production at large transverse momentum in central Pb+Pb collisions at \(\sqrt{s_{_{NN}}} = 2.76\) TeV. Phys. Lett. B 696, 30–39 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Albino, B.A. Kniehl, G. Kramer, AKK update: improvements from new theoretical input and experimental data. Nucl. Phys. B 803, 42–104 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    O. Fochler, Z. Xu, C. Greiner, Energy loss in a partonic transport model including bremsstrahlung processes. Phys. Rev. C 82, 024907 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high energies. Dokl. Akad. Nauk Ser. Fiz. 92, 535–536 (1953)zbMATHGoogle Scholar
  22. 22.
    A. Adare et al., Heavy quark production in \(p\!+\!p\) and energy loss and flow of heavy quarks in au+au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. C 84, 044905 (2011)Google Scholar
  23. 23.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Heavy quark production at RHIC and LHC within a partonic transport model. Phys. Rev. C 82, 044906 (2010)ADSGoogle Scholar
  24. 24.
    B. Abelev et al., Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76\) TeV, J High Energy Phys. 09, 112 (2012)Google Scholar
  25. 25.
    Chiara B, Measurement of D\(^0\) v\(_2\) in Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76\) TeV with ALICE at the LHC, arXiv:1111.6886 (2011)Google Scholar
  26. 26.
    B.I. Abelev et al., Transverse momentum and centrality dependence of high-\(p_t\) non-photonic electron suppression in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. Lett. 98, 192301 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Adare et al., Energy loss and flow of heavy quarks in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. Lett. 98, 172301 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S. Masciocchi, Investigation of charm and beauty production via semileptonic decays of heavy-flavour hadrons in pp at 7 TeV and Pb-Pb at 2.76 TeV with ALICE. J. Phys. G 38, 124069 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    L.Y. Dokshitzer, D.E. Kharzeev, Heavy quark colorimetry of QCD matter. Phys. Lett. B 519, 199–206 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    R. Abir, C. Greiner, M. Martinez, M.G. Mustafa, J. Uphoff, Soft gluon emission off a heavy quark revisited. Phys. Rev. D 85, 054012 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    P.B. Gossiaux, J. Aichelin, Towards an understanding of the RHIC single electron data. Phys. Rev. C 78, 014904 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    A. Peshier, Turning on the charm, Nucl. Phys. A 888, 7-22 (2012)Google Scholar
  33. 33.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Elliptic flow and energy loss of heavy quarks in ultra-relativistic heavy ion collisions. Phys. Rev. C 84, 024908 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Meistrenko, A. Peshier, J. Uphoff, C. Greiner, Collisional energy loss of heavy quarks, submitted to Physics Letters B, arXiv:1204.2397 (2012)Google Scholar
  35. 35.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Open heavy flavor at RHIC and LHC in a partonic transport model. Acta Phys. Pol. B Proc. Suppl. 5, 555 (2012)CrossRefGoogle Scholar
  36. 36.
    O. Fochler, J. Uphoff, Z. Xu, C. Greiner, Jet quenching and elliptic flow at RHIC and LHC within a pQCD-based partonic transport model. J. Phys. G 38, 124152 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Heavy quarks at RHIC and LHC within a partonic transport model. Nucl. Phys. A 855, 444–447 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Production, elliptic flow and energy loss of heavy quarks in the quark-gluon plasma. J. Phys. Conf. Ser. 270, 012028 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    V.N. Gribov, L.N. Lipatov, Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)Google Scholar
  40. 40.
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)ADSGoogle Scholar
  41. 41.
    G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language. Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637–686 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_t\) jet clustering algorithm. J. High Energy Phys. 04, 063 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Jet reconstruction in heavy ion collisions. Eur. Phys. J. C 71, 1539 (2011)ADSGoogle Scholar
  45. 45.
    S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam et al., Observation and studies of jet quenching in PbPb collisions at \(\sqrt{s_{NN}}=2.76\) TeV. Phys. Rev. C 84, 024906 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    G. Aad et al., Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \(\sqrt{s_{NN}}=2.76\) TeV with the ATLAS detector at the LHC. Phys. Rev. Lett. 105, 252303 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    CMS-Collaboration. Jet momentum dependence of jet quenching in PbPb collisions at \(\sqrt{s_{NN}}= 2.76\) TeV. Phys. Lett. B 712, 176 (2012)Google Scholar
  48. 48.
    M. Glück, E. Reya, A. Vogt, Dynamical parton distributions of the proton and small x physics. Z. Phys. C 67, 433–448 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 26 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    I. Bouras et al., Relativistic shock waves and mach cones in viscous gluon matter. J. Phys. Conf. Ser. 230, 012045 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    I. Bouras, A. El, O. Fochler, H. Niemi, Z. Xu et al., Transition from ideal to viscous mach cones in a kinetic transport approach. Phys. Lett. B 710, 641–646 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    I. Bouras et al., Relativistic shock waves in viscous gluon matter. Phys. Rev. Lett. 103, 032301 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    I. Bouras et al., Investigation of shock waves in the relativistic Riemann problem: a comparison of viscous fluid dynamics to kinetic theory. Phys. Rev. C 82, 024910 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    S.R. de Groot et al., Relativistic Kinetic Theory: Principles and Applications (North Holland, Amsterdam, 1980)Google Scholar
  55. 55.
    B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin et al., Universality of the diffusion wake from stopped and punch-through jets in heavy-ion collisions. Phys. Rev. C 79, 034902 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ioannis Bouras
    • 1
  • Andrej El
    • 1
  • Oliver Fochler
    • 1
  • Felix Reining
    • 1
  • Florian Senzel
    • 1
  • Jan Uphoff
    • 1
  • Christian Wesp
    • 1
  • Zhe Xu
    • 2
  • Carsten Greiner
    • 1
    Email author
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations