New Forms of High Energy Density Matter

  • Larry McLerranEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


I will discuss new forms of matter that might be seen in ultra-relativistic heavy ion collisions. The Quark Gluon Plasma is matter in thermal equilibrium at very high temperature and low to intermediate baryon density. This is a deconfined plasma of quarks and gluons. At high baryon density and low to moderate temperature, there are a number of different possible phases of Quarkyonic Matter. Quarkyonic matter is at energy densities large compared to the natural scale of strong interactions \((200~\mathrm{{MeV}})^4\). The quarks in the Fermi sea behave as quasi free quarks, but Fermi surface and thermal excitations are confined into baryons and mesons. Chiral symmetry is broken in a translational invariant way. In the wave function of a high energy hadron, the states that control the high energy limit of scattering are highly coherent and very dense gluons. This is the Color Glass Condensate. A short time after the collision of two high energy hadrons, very strong longitudinal color electric and color magnetic fields are formed. This is the Glasma. At later times the Glasma fields evaporate into gluons and thermalize. During this thermalization, gluon Bose condensates might be formed. Thermalization might occur through coherent effects. Although the intrinsic strength of interaction might be weak, the Glasma may be a realization of a strongly interacting Quark Gluon Plasma.


Chiral Symmetry Quark Gluon Plasma Classical Field Bose Condensate Color Glass Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



L. McLerran wishes to acknowledge the organizers of this meeting, in particular Walter Greiner, Michael Itkis and Richard Newman. The research of L. McLerran and R. Venugopalan is supported under DOE Contract No. DE-AC02-98CH10886.


  1. 1.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian et al., Phys. Rev. Lett. 83, 3154 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    For a review see: W. Greiner, K. Rutz, M. Bender, T. Bürvenich et al., Phys. Rev. C 56, 238 (1997)Google Scholar
  3. 3.
    L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007) [arXiv:0706.2191 [hep-ph]]Google Scholar
  4. 4.
    L.Y. Glozman, R.F. Wagenbrunn, Phys. Rev. D 77, 054027 (2008) [arXiv:0709.3080 [hep-ph]]Google Scholar
  5. 5.
    T. Kojo, Y. Hidaka, L. McLerran, R.D. Pisarski, Nucl. Phys. A 843, 37 (2010) [arXiv:0912.3800 [hep-ph]]Google Scholar
  6. 6.
    M.G. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422, 247 (1998) [hep-ph/9711395]Google Scholar
  7. 7.
    R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998) [hep-ph/9711396]Google Scholar
  8. 8.
    Y. Aoki, Z. Fodor, S.D. Katz, and K.K. Szabo, Phys. Lett. B 643, 46 (2006) [hep-lat/0609068]Google Scholar
  9. 9.
    G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, B. Petersson, Nucl. Phys. B 469, 419 (1996) [hep-lat/9602007]Google Scholar
  10. 10.
    E. Iancu, R. Venugopalan, in Quark Gluon Plasma 3, eds. R.C. Hwa and X.N. Wang (World Scientific, Singapore, 2004) pp. 249-363 [hep-ph/0303204]Google Scholar
  11. 11.
    A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 52, 3809 (1995) [hep-ph/9505320]Google Scholar
  12. 12.
    A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D textbf52, 6231 (1995) [hep-ph/9502289]Google Scholar
  13. 13.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008) [arXiv:0711.0950 [hep-ph]]Google Scholar
  14. 14.
    P. Romatschke, R. Venugopalan, Phys. Rev. Lett. 96, 062302 (2006) [hep-ph/0510121]Google Scholar
  15. 15.
    K. Dusling, F. Gelis, R. Venugopalan, Nucl. Phys. A 872, 161 (2011) [arXiv:1106.3927 [nucl-th]]Google Scholar
  16. 16.
    J.-P. Blaizot, F. Gelis, J.-F. Liao, L. McLerran, R. Venugopalan, Nucl. Phys. A 873, 68 (2012) [arXiv:1107.5296 [hep-ph]]Google Scholar
  17. 17.
    A. Kurkela, G.D. Moore, JHEP 1111, 120 (2011) [arXiv:1108.4684 [hep-ph]]Google Scholar
  18. 18.
    T. Epelbaum, F. Gelis, Nucl. Phys. A 872, 210 (2011) [arXiv:1107.0668 [hep-ph]]Google Scholar
  19. 19.
    J. Berges, S. Schlichting, D. Sexty, Phys. Rev. D 86, 074006 (2012) [arXiv:1203.4646 [hep-ph]]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Brookhaven National Laboratory and RIKEN BNL CenterUptonUSA

Personalised recommendations